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Introduction

A degree in mathematics from University of lceland and Fil.
Dr in statististic from University of Gothenburg (Sweden).

@ A professor of econometrics at the faculty of economics at the
University of Iceland

@ Have given courses on general econometrics, time-series and
computational methods

@ Wrote a thesis on the computation of shrinkage (James-Stein,
empirical Bayes) estimators in time-series models

@ Shrinkage-estimators can be compared to pre-test estimators
that are frequently used in practice.

@ Do my own programming, Fortran, R, octave, Julia, etc.
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Pre-test and Bayes estimator

@ In applied statistical work a common practice is to do some
test first and if the estimated parameter is considered
"significant”, the maximum-likelihood estimator is used.

Ho : pp = po, 1 # o
fipre—TEST = pol(Ho not rejected) + fipy eI(Ho rejected)

o If the model is; X ~ N(u,az), where o is known, and the
prior is: p ~ N(uo, 72), then the posterior has mean:
2 N 2 N
B + AMLE 2=y, fimee = X.
@ The key issue is that pyg is a reference-value for the unknown
parameter.
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Both the pre-test approach and the Bayesian approach
"shrink” the MLE-estimator towards a reference value pyp.

o If a priori-information is weak, i.e.72 is big, then the reference
value has little impact.

o If the parameter p is high-dimensional, the Bayesian estimator
has better qualities than the MLE and PRE — TEST in the
mean-square-error sense if 72 is estimated from the data. The
James-Stein estimators.

@ Good a priori guess improves the MLE-estimator, if number of
dimensions is higher than 3.

o | would like to compute something similar for estimators of
the covariance-matrix.
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The covariance-matrix

e What is covariance, or correlation(scaled covariance)?
Essentially a geometric concept, an angle, it relates angles
and length of vectors, i.e.:

u-v =cos(d) [|ul| [[v]],

p = cos(#) measures linear the relationship of the vector.

@ It is also a probabilistic concept:

E(X1 — m) (X2 — p2) = Cov(X1, X2) = pv/ V(X1)V/ V(X2),

i.e. the correlation coefficient is scaled variance.
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@ On matrix-form:

S SRR

5 2]l 000 -

o Cor o

o —1<p=cos(f)<lie —mw<l<m.

@ In high dimensions admissible elements of the
covariance/correlation matrix follow complicated restrictions.

@ The matrix, X has to be positive-definite. (semi-positive for
singular distributions).

@ It might be sensible to write the covariance-matrix as a
funcion of angles.
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The Choleski approach

@ Factorization of the correlation matrix. The non-singular
correlation matrix can be written as LL’

@ A look at the Choleski algorithm shows that the cofficients are
polar-coordinates.

o le. L= L(¢), where ¢ is a vector of angles.

$21
$31 P32

¢ =
Gni o o Gpnoi

@ | the correlation matrix is n x n, the number of angles is
(n—1)n/2. The angles are all in the interval (0, 7).
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Y = oCoro, where o is diagonal matrix

consisting of square roots of the diagonal of ¥.
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In two dimensions

If p = cos(¢), then L = L(¢).

b= [ cos(6) sin9) ] |
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Extensions to n dimensions

L= L(¢1,--.,Pn(n-1)/2))- One version is:

[ cos(qﬁu) Hk lsm(gb,k) j=1,...i—1,
P B sin(en), J =1,

@ Easily inverted , i.e. if the correlation matrix is known we can
find the angles:

[::
¢pij = arccos | ————
\/ Zk—l ik
o Calculus is easy:
Oljj .
=/t im), | >,
Do ii/ tan(dim) or m>j

—ljtan(¢im), for m=j.
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Some numerical concerns

The matrix must not be singular or almost singular.
Some of the angles will be poorly estimated.
If an angle ¢;; = 0, then the rest of that line is unindentified.

The outcome is sensitive to the order of the variables in the
vector.
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@ | want to be able to enforce the restrition of reduced-rank.
E.g. a "single-factor” model.

Restrictions of that type may be a sensible prior in a Bayesian
approach.

The ordering of variables in the observation vector should not
matter.

@ An approach might be to use singular-value-decomposition
(SVD) and Givens-rotations. The SVD exist for all matrices.

@ SVD and Givens rotations are smart computational devices.
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@ Pinheiro-Bates, give the following:

Y = UNU
U= G1 G2 ce Gn(nfl)/2)7 where
cos(;), if J=k=m(i)
or j =k = my(i)
sin(¢;), if J=mi(i), k = my(i)
G,‘U7 k] = —sin(¢;), if j: m2(i), k = ml(/)
1, if J=k# m(i)
and j = k # mo(i)
L 0, otherwise

m1(i) < my(i) integers in the range (1,...,n) and
i = ma(7) — my(7) + (ma(7) — 1)(n— mi(1)/2)

Helgi Témasson helgito@hi.is Parameterization of a covariance-matrix with unbalanced data



@ The U matrix has the property UU’ = I. The matrix A is
diagonal with (semi-positive) values on the diagonal. The
singular-values.

e For a given U, it is possible to invert this function, some ¢;’
are in the interval (—m,7) (the ¢j11,;'s) and the other in the
interval (—7/2,7/2).

@ Calculus is easy.
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X X X X X
¢ X
$31 P32 X X X

X
X
X

Gt o Gpnet |

Similar to Choleski factorization but the angles have different
meaning.
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@ If no singular values are equal and the matrix
N = diag(A1, ..., An) is order in decreasing order, the matrix
U is unique up to signs of the columns. | decided to use
det(U) = 1, and the top row from second element are all
positive.

@ It easy to decide, e.g. that only some of the singular values
are positive, rest 0.The a certain triangle of ® is
undetermined and can be set to any value, e.g., 0.

e Enforcing restrictions, such as rank, as in factor-models is
therefore trivial.
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A numerical illustration

e Data from NBBO, trading in American markets January 2016.
10 frequently trading assets, 10 infrequently trading assets.
Aim: guess of covariance matrix of innovations.

@ Sample of most trading assets used, every transaction of the
less traded assets.

@ Assumed model is noisy random-walk.

y(ti, k) = CkX(t;) + ek measurement equation of asset k at time t;

R 0 .- - 0
0 h% o --- 0 ) )

H = : , . : : , hy =V(ex), measurement noise,
0 --v eer ... hﬁ

X(t), is a vector of true values at time t,
Ck is a matrix that pick asset k,

y(ti, k) is log transaction price, €, measurment noise at time ¢t;.
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Here,y(t k) is the logarithm of the observed transaction price of
asset k at time t;. X(t;) is the vector of (log of) the true values of
the assets, € is the deviation of traded price from true price. C is
a matrix that picks coordinate k from the vector X(t;). The true
value is supposed to evolve in time by:

dX(t)=dW(t), V(dW(t))= Qdt, WH/(t),Wiener process.

The variance of the market micro-structure noise, H, is estimated
by transaction which take place (almost) simultaneously. In the
case of simultaneous trades y(t;, k) is the average of prices. The
statistical problem is (mainly) to estimate the covariance of the
innovations, Q. Log-likelihood is calculated by means of Kalman
filter.
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Trading intensity

Asset Count
AAPL 4605707
BAC 3763218
CHK 1073992
CSCO 2311239
EMCF 37
EXT 213

F 2126560

FB 2900320
FCX 2284878
GE 2999775
ICBK 75
KMDA 188
MSFT 3800629
PLBC 129
PME 188
SBB 291
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For the high frequency trading a random sample was used, for
the others every transaction was used.

Many of the singular values of the estimated covariance
matrix are very close to zero.

That suggests that a factor model (reduced-rank covariance)
is a good approximation.

Even in the case of moderate dimension where all the singular
values equal one results in an estimated matrix which is close
to being singular.
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A textbook factor model

rt:at—i-ﬁft-i-st
V(ry)=Bx3 + D

o Factors, f could be observable or non-observable.
@ An example of a single-factor model is Sharpe-CAPM:

lie = & + Bifme + €t

@ Bayesians mith want to set a prior on the number of factor or
on partial coefficient using formulas of this type:

E(Y|X) = py + TyxTxx (X — px)
A
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Applications and conclusions

It is difficult to guess reasonable for the elements of a large
covariance matrix. Perhaps it is easier guessing the values of
the partial-correlation matrix (a function of the inverse of the
covariance matrix). Reference value zero partial correlation
can be sensible.

By using angles and postive singular value enforcing a legal
covariance matrix is trivial.

A prior can easily be set and allowing small deviations, e.g. by
means of penalty functions.

The parameters are rotation angles and eigenvalues. It is
intuitive to set a prior belief on these parameters.

Other methods are plausible. E.g. start with a symmetric
matrix and take the matrix-exponent. The outcome will
allways be positive definite (Pinheiro-Bates, 1996). For a
recent implementation see Hansen(2021).

Choleski factorization may be easier for well behaved matrices.
The Givens approach seems better for matrices that are close
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