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A brief presentation

Thank you for inviting me to NHH. A pleasure to be in Bergen

I am professor eonometris/statistis at Faulty of Eonomis (used to be business

and eonomis) at the University of Ieland.

I have a degree in applied mathematis from the University of Ieland and a Fil. Dr.

from the University of Gothenburg.

I have had a tenured position for 25 years and I have taught eonometris/statistis

and �nanial mathematis (Ito, Blak-Sholes, et.)

I am a omputing person and I write my own programs, R, MATLAB/OCTAVE,

FORTRAN, RCPP, JULIA et. I have given a ourse on numerial methods in

Eonomis and Finane (the Miranda/Fakler book).

I have given onsultations in medial statistis and real-estate appreiations

modeling.

Mostly my fous has been on time-series.
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Why ontinuous-time modelling?

Many phenomena in siene, biology, eonomis, �nane, et. evolve in time.

The variables of interest have a value at eah point in time.

Variables are frequently measured regularly, daily, monthly, quarterly, et.

Traditional time-series methods treat suh data using disrete-time dynamis.

The regular sampling of data and ease of omputation favour the disrete-time

approah.

The parametrization of a disrete-time time-series model depends on the sampling

frequeny.

The ontinuous-time approah is in some sense, more diret, non-synhronous data

analysis is natural (no suh thing as missing data). Computationally somewhat more

ompliated.
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Plan of talk

An illustration of an applied approah desribed in Tómasson (2015).

In that paper the fous is on a linear stohasti-di�erential-equation.

The ARMA approah is standard in many time-series-eonometris appliations.

Non-linear SDE are also possible.

A few omments on R-programming and distributing a pakage.

A few omments on further possibilities.

Conlusion.
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Continuous-time ARMA

The observations are measurements of dependent random variables. The

dependeny struture is due to the ordering in time.

Dynamis an be desribed by di�erential equations if time is ontinuous and by

di�erene equations if time is disrete.

In many sienti� �elds, physis, �nane, eonomis, biology, et. theoretial

dynami proess are desribed in ontinuous-time by means of di�erential equations

By doing the statistial modelling in ontinuous time we are in sense loser to the

real physial model

The probabilisti models for dynamis are the stohasti-di�erential-equations (SDE)
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The disrete-time ARMA is of the form:

Yt = φ
1

Yt−1

+ · · ·+ φpYt−p + εt − θ
1

εt−1

− · · · − θqεt−q

E(εt) = 0, when t 6= s E(εtεs) = 0, E(ε2t ) = σ2

ε .

This is the ARMA(p,q) model, we all εt a �white-noise�.

A simple way of athing dynamis

The famous ookbook by Box & Jenkins (1976) popularized the use of ARMA

models in time series analysis.

Here time, t, is disrete, i.e. t = 1, 2, . . .

This is a linear stohasti di�erene equation.

By subtrating (and adding) Yt−1

from the de�nition of the ARMA(p,q), the ARMA an

be written as:

∆p
Yt + φ̃

1

∆p−1

Yt + · · ·+ φ̃pYt = εt + · · ·
∆ = the di�erene operator , ∆Yt = Yt − Yt−1

.

We would like to have an analogous ontinous-time version

Helgi Tómasson Time-series modeling in ontinuous-time Seminar Norges HandelshøjskoleDeember 3rd, 2015 6 / 40



Answer:

Y
(p)(t) + α

1

Y
(p−1)(t) + · · ·+ αpY (t) =

σ d(W (t) + β
1

W
(1)(t) + · · ·βqW

(q)(t)).

Here Y (p)(t) denotes the p-the derivative of proess Y (t). The dW (t) denotes the
(normal) ontinuous-time white-noise. W (t) is the Wiener proess.

Strily mathematially speaking the white noise dW (t) does not exist, let alone higher
derivatives. Therefore the formula de�ning the CARMA(p,q) is of a rather formal nature.

The CARMA, however is well de�ned. The �rst p derivatives of the CARMA proess

Y (t) exist, so the path of Y (t) is "smooth".
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E.g., the CAR(1) proess, (Ornstein-Uhlenbek):

dY (t) = −αY (t) dt + σ dW (t), implies

Y (t) =

∫ t

t
0

(−αY (s) ds + σ dW (s))

I.e. Y (t) is an integral, the pattern must be smooth.

The AR(1) is a subset of AR(2) and all ARMA(p,q) with p≥1.
The ontinuous-time AR(1), CAR(1), is not a subset of CAR(2). I.e. the CAR(p)

family does not form a sequene of statistially nested models.

The family of CARMA(p,q) models is a subset of CARMA(p+1,q+1).
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To be able to generalize from a single realization of a stohasti proess, some kind

of stability ondition is neessary. Stationarity (and ergodiity) is the formal

ondition in time-series analysis.

The stationarity onditions restrits the parameter spae of ARMA and CARMA

models.

The ARMA model an be stated by use of polynomial funtions of the bakward

operator, BYt = Yt−1

,

Φ(B)Yt = Θ(B) εt ,

Φ(z) = 1 − φ
1

z − · · · − φp z
p,

Θ(z) = 1 − θ
1

z − · · · − θq z
q.
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Similarly the CARMA model an be stated by use of polynomial funtions of the

di�erential operator D , D Y (t) = Y ′(t) .

Y
(p)(t) + α

1

Y
(p−1)(t) + · · ·+ αpY (t) =

σ d(W (t) + β
1

W
(1)(t) + · · ·βqW

(q)(t)),

a(D)Y (t) = σ db(D)W (t),

a(z) = z
p + α

1

z
p−1 + · · ·+ αp,

b(z) = 1+ β
1

z + · · ·+ βq z
q.
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The ARMA proess is stationary if the roots of Φ(z) are outside the unit irle.

The CARMA proess is stationary if the roots of a(z) have negative real parts.

Enforing the stationarity restrition is ompliated if p> 2.

Routh-Hurwitz algorithm is a well known (100+ years old) algorithm for heking

the ondition of a(z).

In this work a method a method based on Pham & Breton (1991) is used.

Another possibility is to ombine the onditions for Φ(z) using methods desribed in

Monahan (1984) and methods desribed in Belher, Hampton & Tunnili�e Wilson

(1994).
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Estimation and simulation methods

Disrete obersvations of a ontinuous proess are of the form:

y(t
1

), y(t
2

), . . .

The likelihood funtion of a CARMA is alulated by use of state spae

representation and the Kalman �lter.

The log-likelihood funtion an be maximized of the spae of stationary CARMA by

using a numerial optimization routine.

If a andidate, f̂ (ω), for the spetral density is available another way would be to

use a Whittle-type estimator and minimize something like:

min

α,β ,σ

∫
∞

−∞

(log(f (ω)) + f̂ (ω)/f (ω))dω,

replaing the integral with a sum over "appropriate" frequenies.
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Simulation of CARMA in the time domain is straightforward by using state spae

and Kalman �lter.

A frequeny domain representation of CARMA:

Y (t) =

∫
∞

−∞

exp(iω t) dZ (ω),

E(dZ (ω)dZ (ω)) = f (ω)dω,

E(dZ (ω)) = 0,

E(dZ (ω)dZ (λ)) = 0, λ 6= ω.

an be use to motivate frequeny domain simulation approahes.
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Then, an interval (−ωc , ωc), that represents a high proportion of the variability in Y (t) is
hosen. The interval (0, ωc) is then divided into M subintervals with ∆i = (ωi −ωi−1

). A
lassial approah is that of Rie (1954):

YRice(t) =
M∑

i=1

2

√

f (ωi)∆i os(ωi t − Ui),

with Ui independent U(−π, π).

Sun & Chaika (1997) give a modi�ed version:

YSC (t) =
M∑

i=1

Ri os(ωi t − Ui), with Ui independent U(−π, π),

and

Ri independent Rayleigh with E(R2

i ) = 4f (ωi)∆i .

The simulated proesses YRice(t) and YSC (t) have the same seond order properties as a

theoretial normal Y (t) with spetral density f (ω). YSC (t) is normally distributed,
whereas YRice(t) is only approximately normal.
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Some numerial issues

Inverting matries: Solved by slightly modi�ed LAPACK FORTRAN routines.

Matrix exponential: Solved by FORTRAN subroutines by Sidje (1998).

Fourier transform for non-uniform time sale: Solved by FORTRAN subroutines by

Greengard & Lee (2004).

Various numerial tasks, maximizations, random-numer generations, et: Solved by

various R-pakages, MASS, PolynomF, msm, nlme, numDeriv, (R Development Core

Team, 2011).
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On state spae representations

Imagine a seond order linear di�erential equation:

x
′′(t) + a

1

x
′(t) + a

2

x(t) = 0, an be written as

z(t) =

[
x(t)
x ′(t)

]

z

′(t) + Az(t) = 0, with

A =

[
0 −1
a
2

a
1

]

z

′(t) + Az(t) =

[
x ′(t)
x ′′(t)

]

+

[
−x ′(t)

a
2

x(t) + a
1

x ′(t)

]

=

[
0

0

]
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A state spae representation of ARMA(p,q)

Let β = (1, θ
1

, . . . , θq) and

X t =








Xt−p+1

Xt−p+2

.

.

.

Xt







, Tt =










0 1 0 · · · 0

0 0 1 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 1

φp φp−1

φp−2

· · · φ
1










,

R = [0 0 · · · 0 1]′

X t+1 = TX t + Rεt+1,Yt = β
′

X t

∆X t+1 = X t+1 − X t = (T − I )X t + noise = AX t + noise

see, e.g., (Brokwell & Davis, 1991) hatper 12. Yt is the measured proess.
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A state spae representation of CARMA(p,q)

Y (t)(p) + α
1

Y (t)(p−1) + · · ·+ αpY (t) =

σ(W (t)(1) + β
1

W (t)(2) + · · ·+ βqW (t)(q))

What does this mean? In state-spae form

Y (t) = β
′

X (t)

β
′ = (1 β

1

· · ·βq 0)

dX (t) = AX (t) + σRdW (t)

A =










0 1 0 · · · 0

0 0 1 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 1

−αp −αp−1

· · · · · · −α
1










, X (t) =










X (t)

X (t)(1)

.

.

.

X (t)(p−2)

X (t)(p−1)










A state-spae representation of the CARMA(p,q) proess Y (t).
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The dynamis of the state vetor:

dX (t) = AX (t) + σRdW (t)

is a linear stohasti di�erential equation whih is easy to solve.

X (t) = exp

A(t−t
0

)
M X (t

0

)
︸ ︷︷ ︸

predition

+ σ

∫ t

t
0

exp

A(t−u)
M RdW (u)

︸ ︷︷ ︸

innovation

The proess is stationary if the eigenvalues of A have a negative real-part.

The variane matrix of the innovation, Σt−t
0

solves the equations:

AΣt−t
0

+ Σt−t
0

A
′ = σ2(exp

A(t−t
0

)
M RR

′

exp

A′(t−t
0

)
M −RR ′)

Shoji & Ozaki (1998) derived this form of the equation and Tsai & Chan (2000) give

an algorithm for alulating Σt−t
0

.
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A review of spetral theory

ARMA proess an be approximated by a weighted sum of trigonometri funtions, with

random weights.

Yt ≃
n∑

j=1

A(λj )e
itλj

−π < λ
1

< · · · < λn < π

A(λj ) unorrelated omplex random variablesE(A(λj)) = 0,

E(A(λj) ¯A(λj )) = σ2

j

σ2

j variation due to the frequeny λj ,

F (λ) =
∑

λj<λ

σ2

j is alled the spetral CDF for Yt ,
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On spetral properties of CARMA

A stationary proess an be represented by a stohasti integral:

Y (t) =

∫
∞

−∞

e
iωt

f (ω)1/2 dZ (ω)

where dZ (ω) are unorrelated omplex random variables (e.g. a omplex white-noise

proess, i.e. in the ase of normality, Z is a standard omplex Wiener-proess.), suh

that E(dZ (ω) = 0, E(dZ (ω) ¯
dZ (ω)) = 1, and E(dZ (ω) ¯

dZ (λ)) = 0, if ω 6= λ. The
variane of the proess is given by:<

V (Y (t)) =

∫
∞

−∞

f (ω)dω = 2

∫
∞

0

f (ω)dω.
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The CARMA proess is frequently expressed with help of polynomials and the di�erential

operator D , DY (t) = Y ′(t).

a(z) = z
p + α

1

z
p−1 + · · ·+ αpz ,

b(z) = 1+ β
1

z + · · ·+ βqz
q,

a(D)Y (t) = σb(D)dW (t).

Then the spetral density Y (t) will be:

f (ω) =
σ2

2π

b(iω)b(−iω)

a(iω)a(−iω)

A haraterization of the CARMA(p,q) proess is that the spetum is a rational funtion.

The numerator in f (ω) has to be two degrees lower than the denominator, i.e., q ≤ p− 1.
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The tarma pakage I am still a beginner

A olletion of my own R and FORTRAN programs with help from EXPOKIT,

LAPACK and NUFFT.

A highly experimental version is out. Doumenation very lousy.

The pakage aims to simulate and estimate CARMA(p,q) models.

It is a beginner's projet. Hints and suggestions welome. How to write

doumentation, how to organize history/hangelog �les et. Also aademi

suggestions and pratial appliations, et.

Due to liensing issues I have now removed dependeny on EXPOKIT an NUFFT.
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Illustration

#

# Load tarma pakage

#

> library(tarma)

Loading required pakage: MASS

Loading required pakage: PolynomF

Loading required pakage: msm

Loading required pakage: nlme

Loading required pakage: numDeriv

tarma loaded

#

# Define a CARMA(2,1) model

#

> a=(2,40)

> b=(1,0.15)

> sigma=6.5
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#

# Simulate, exponential sampling times

#

> tt=umsum(rexp(1000))/10

> y=arma.sim.timedomain(tt,a,b,sigma)

#

# Define a referene model, CAR(1), Ornstein-Uhlenbek

#

> m0=tarma(tarmalist(y,tt,1,1,1))

#

# Estimate the CAR(1)

#

m0e=tarma.maxlik(m0)
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#

# Expand CARMA(1,0) to an equivalent CARMA(2,1)

#

> m21=tarma.new(m0e)

#

> tarma.loglik(m21)

[1℄ -326.4575

> tarma.loglik(m0e)

[1℄ -326.4575

> m21$ahat

[1℄ 3.863464 2.863464

> m21$bhat

[1℄ 1 1

> m21$sigma

[1℄ 1.619050
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#

# Estimate the CARMA(2,1)

#

> m21e=tarma.maxlik(m21)

> summary(m21e)

$oeff

MLE STD-MLE

AHAT_1 2.1342112 0.25486121 (true value 2)

AHAT_2 41.1274657 1.72153107 (true value 40)

B_0 1.0000000 0.00000000

BHAT_1 0.1379970 0.02623775 (true value 0.15)

SIGMAHAT 6.9956494 0.65072796 (true value 6.5)

$loglik

[1℄ -52.97566 (log-likelihood for

CAR(1) -326.475)

$bi

[1℄ 87.51444

>
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#

# Frequeny domain estimation is also possible

#

> m21w=tarma.whittle(m21,w=(0:2000)/100)

#

#

> tarma.loglik(m21w)

[1℄ -77.18719

$oeff

MLE STD-MLE

AHAT_1 3.3292393 0.26239118

AHAT_2 40.8512040 0.06122925

B_0 1.0000000 0.00000000

BHAT_1 0.1823049 NA

SIGMAHAT 6.0560132 NA

$loglik

[1℄ -77.18719
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Figure: Empirial spetrum based on NUFFT
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Figure: The log-spetrum based on CARMA(2,1) estimates and 95% on�dene interval.
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α
1

α
2

β
1

σ

Original time-sale 2 40 0.15 6.5

Time multiplied by 10 0.2 0.4 1.5 0.206

Time multiplied by 0.1 20 4000 0.015 205.55

Table: Impat of saling of time on CARMA parameters.

> tarma.saletime(m21,10)$ahat

[1℄ 0.2 0.4

> tarma.saletime(m21,0.1)$ahat

[1℄ 20 4000

#

# Multiplying time by a onstant transforms the

# parameter values

#

> tarma.loglik(tarma.saletime(m21true,10))

[1℄ -53.31498

> tarma.loglik(tarma.saletime(m21true,0.1))

[1℄ -53.31498
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Randomly spaed observations of a yle

f (ω) =
σ∗

2

4π

(
1

(ωc + ω)2 + a2
+

1

(ωc − ω)2 + a2

)

This 3 parameter models is a 4 parmeter CARMA(2,1)

Y
(2)(t) + 2aY

(1)(t) + (a2 + ω2

c )Y (t) =

σ∗

√

((ω2

c + a2)d

(

W
(0)(t) +

W (1)(t)√
ω2

c + a2

)

α
1

= 2a, α
2

= a
2 + ω2

c , β
1

= 1/
√

ω2

c + a2,

σ = σ∗

√

((ω2

c + a2) = σ∗/β
1

.
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a
1

a
2

b
1

σ

estimate - ∆̄ = 1 1.963 40.439 0.146 6.521

estimate - ∆̄ = 4 1.851 39.178 0.145 6.348

s.e. - ∆̄ = 1 0.085 0.673 0.013 0.359

s.e. - ∆̄ = 4 0.121 1.032 0.031 0.726

Table: Exponential sampling of 5000 observations of a ylial CARMA(2,1) (one repliation).

a = σ∗ = 1, ωc = 2π( radians per time unit ) =

1 yle per time unit

α
1

= 2, α
2

= 1 + (2π)2 = 40.478, β
1

= 0.157, σ = 6.362.
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A real data example: Average temperature on Earth

Jouzel & et al. (2007) show data for average temperature on Earh for the past 800.000

years. An unevenly sampled time series with about 5000 observations.
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Figure: History of the Earth's temperature.
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A CARMA(6,5) estimate of the log(spectrum) of Earth’s temperature

Figure: The log-spetrum of an estimated CARMA(6,5).
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What about CO

2

? Are these series dependent?
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Are these series related (trend was removed)?
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Diussion

Non-linear generalizations are possible (if very good knowledge of the nature of

non-linearity is available)

Non-Gaussian innovations might be an alternative to non-linear models.

The pakage was written in FORTRAN (for speed) with an R-front for usability.

It was trown out of CRAN beause of liense issues and that the examples did not

run on Ripley's solaris mahine.

A newer version based on Rpp is available.

I might submit it to CRAN, R-forge or start a git-hub for distributing my pakages. I

have JULIA versions, and extended preision versions on the way.
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Further possibilities

A multivariate version is on the way.

A Bayesian implementation based on smoothness-priors as well.

Appliation to tik-data, real-estate valuation, ompetition in fuel markets are

progressing (slowly) on my desk.

More ideas welome.
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Conlusion

The ontinuous-time approah is feasible in siene, maro-eonomis and �nane.

I think it is also feasible in miro-data, e.g. on �rms. It is oneivable that �rms

share a dynami struture, but we only observe few yles or even frations of yles

per �rm.

THANK YOU
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