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A brief presentation

@ Thank you for inviting me to NHH. A pleasure to be in Bergen

@ | am professor econometrics/statistics at Faculty of Economics (used to be business

o

and economics) at the University of Iceland.

| have a degree in applied mathematics from the University of Iceland and a Fil. Dr.
from the University of Gothenburg.

| have had a tenured position for 25 years and | have taught econometrics/statistics
and financial mathematics (Ito, Black-Scholes, etc.)

| am a computing person and | write my own programs, R, MATLAB/OCTAVE,
FORTRAN, RCPP, JULIA etc. | have given a course on numerical methods in
Economics and Finance (the Miranda/Fackler book).

| have given consultations in medical statistics and real-estate appreciations
modeling.

Mostly my focus has been on time-series.
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Why continuous-time modelling?

¢ © ¢ ¢ ¢

Many phenomena in science, biology, economics, finance, etc. evolve in time.
The variables of interest have a value at each point in time.

Variables are frequently measured regularly, daily, monthly, quarterly, etc.
Traditional time-series methods treat such data using discrete-time dynamics.

The regular sampling of data and ease of computation favour the discrete-time
approach.

The parametrization of a discrete-time time-series model depends on the sampling
frequency.

The continuous-time approach is in some sense, more direct, non-synchronous data
analysis is natural (no such thing as missing data). Computationally somewhat more
complicated.
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Plan of talk

An illustration of an applied approach described in Témasson (2015).

In that paper the focus is on a linear stochastic-differential-equation.

The ARMA approach is standard in many time-series-econometrics applications.
Non-linear SDE are also possible.

A few comments on R-programming and distributing a package.

A few comments on further possibilities.

¢ ¢ ¢ ¢ ¢ ¢ ¢

Conclusion.
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Continuous-time ARMA

@ The observations are measurements of dependent random variables. The
dependency structure is due to the ordering in time.

@ Dynamics can be described by differential equations if time is continuous and by
difference equations if time is discrete.

@ In many scientific fields, physics, finance, economics, biology, etc. theoretical
dynamic process are described in continuous-time by means of differential equations

@ By doing the statistical modelling in continuous time we are in sense closer to the
real physical model

@ The probabilistic models for dynamics are the stochastic-differential-equations (SDE)
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The discrete-time ARMA is of the form:

Ye=d1Yeo1+ -+ pYepter —bret—1 — - —Oget—g
E(e:) =0, when t #5 E(eres) =0, E(e2) = 02.

©

This is the ARMA(p,q) model, we call €; a ,white-noise”.

¢

A simple way of catching dynamics

The famous cookbook by Box & Jenkins (1976) popularized the use of ARMA
models in time series analysis.

¢

©

Here time, t, is discrete, i.e. t =1,2,...

©

This is a linear stochastic difference equation.

By subtracting (and adding) Y:—1 from the definition of the ARMA(p,q), the ARMA can
be written as:

APY: + QAP G Ye =+
A = the difference operator , AY; = Y; — Yi_1.

We would like to have an analogous continous-time version
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Answer:
Y(P)(t) + Oély(pfl)(t) T tapY(t) =
cd(W(t)+ B WD (t) + - BaW D (1)).

Here Y(P)(t) denotes the p-the derivative of process Y(t). The dW(t) denotes the
(normal) continuous-time white-noise. W(t) is the Wiener process.

Stricly mathematically speaking the white noise d W/(t) does not exist, let alone higher
derivatives. Therefore the formula defining the CARMA(p,q) is of a rather formal nature.
The CARMA, however is well defined. The first p derivatives of the CARMA process

Y (t) exist, so the path of Y(t) is "smooth".
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@ E.g., the CAR(1) process, (Ornstein-Uhlenbeck):
dY(t) = —aY(t)dt + ocdW/(t), implies
t
Y(t) = / (—aY(s)ds+ ocdW(s))
to
l.e. Y(t) is an integral, the pattern must be smooth.

@ The AR(1) is a subset of AR(2) and all ARMA(p,q) with p>1.

@ The continuous-time AR(1), CAR(1), is not a subset of CAR(2). l.e. the CAR(p)
family does not form a sequence of statistically nested models.

@ The family of CARMA(p,q) models is a subset of CARMA(p+1,9+1).
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@ To be able to generalize from a single realization of a stochastic process, some kind
of stability condition is necessary. Stationarity (and ergodicity) is the formal
condition in time-series analysis.

@ The stationarity conditions restricts the parameter space of ARMA and CARMA
models.

@ The ARMA model can be stated by use of polynomial functions of the backward
operator, BY; = Yi_1,

®(B) Y: = O(B) e,
O(z)=1—¢rz— —¢p2°,
O(z)=1—01z—---—042°.
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@ Similarly the CARMA model can be stated by use of polynomial functions of the
differential operator D, D Y(t) = Y'(t) .
YO+ YP V() + - +a,Y(t) =
o d(W(t) + BWD(t) + - BaW (1)),
a(D)Y(t) = odb(D)W(t),
az) =2+’ P+ +ap,

b(z)=1+PBiz+ -+ BqZ°.
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The ARMA process is stationary if the roots of ®(z) are outside the unit circle.
The CARMA process is stationary if the roots of a(z) have negative real parts.

Enforcing the stationarity restriction is complicated if p> 2.

¢ ¢ ¢ ¢

Routh-Hurwitz algorithm is a well known (100+ years old) algorithm for checking
the condition of a(z).

@ In this work a method a method based on Pham & Breton (1991) is used.

@ Another possibility is to combine the conditions for ®(z) using methods described in
Monahan (1984) and methods described in Belcher, Hampton & Tunnicliffe Wilson
(1994).
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Estimation and simulation methods

@ Discrete obersvations of a continuous process are of the form:

y(t1), y(t2), ...
@ The likelihood function of a CARMA is calculated by use of state space
representation and the Kalman filter.

@ The log-likelihood function can be maximized of the space of stationary CARMA by
using a numerical optimization routine.

o If a candidate, f(w), for the spectral density is available another way would be to
use a Whittle-type estimator and minimize something like:

min, [ (og(F(w)) + F(w)/ () d

o, B S

replacing the integral with a sum over "appropriate" frequencies.
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@ Simulation of CARMA in the time domain is straightforward by using state space
and Kalman filter.

@ A frequency domain representation of CARMA:

Y(t) = /Oo exp(iw £) dZ(w),

E(dZ(w)dZ(w)) = f(w) dw,
E(dZ(w)) =0,
E(dZ(w)dZ(A\)) =0, \#w.

can be use to motivate frequency domain simulation approaches.
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Then, an interval (—we,wc), that represents a high proportion of the variability in Y(t) is
chosen. The interval (0,w.) is then divided into M subintervals with A; = (wj —wi—1). A
classical approach is that of Rice (1954):

M
Yeice(t) = > 2¢/F(wi)Ai cos(wit — Up),
i=1
with U; independent U(—m, 7).
Sun & Chaika (1997) give a modified version:
M
Ysc(t) = Z Ri cos(wit — U;), with U; independent U(—m, ),
i=1

and

R independent Rayleigh with E(R?) = 4f(wi)A;.

The simulated processes Yrice(t) and Ysc(t) have the same second order properties as a
theoretical normal Y(t) with spectral density f(w). Ysc(t) is normally distributed,
whereas Ygice(t) is only approximately normal.
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Some numerical issues

@ Inverting matrices: Solved by slightly modified LAPACK FORTRAN routines.

@ Matrix exponential: Solved by FORTRAN subroutines by Sidje (1998).

@ Fourier transform for non-uniform time scale: Solved by FORTRAN subroutines by
Greengard & Lee (2004).

@ Various numerical tasks, maximizations, random-numer generations, etc: Solved by
various R-packages, MASS, PolynomF, msm, nlme, numDeriv, (R Development Core
Team, 2011).
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On state space representations

Imagine a second order linear differential equation:

x"(t) + a1x'(t) + a2x(t) = 0, can be written as

x(t
Z(t) = |: Xl((t)) :|
Z'(t)+ Az(t) =0, with

A:{ 0 —1]
az al

2@+a200= | 50 |+ | it | =10
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A state space representation of ARMA(p,q)

Let 3= (1,64,...,0q) and

0 1 0 .- 0
Xt7p+1
0 0 1 -+ 0
Xt—p+2
Xe=| 0 |y Te=prnn
) 0 0 0 e 1
X
‘ $p Pp-1 Pp—2 - ¢1
R=[0 0 --- 0 1]

Xet1 = TX:+ Reeyr, Ve = B/ X,
Axt+1 = Xt+1 —Xt = (T— /)Xt—|—n0ise = AXf"’ﬂOiSe

see, e.g., (Brockwell & Davis, 1991) chatper 12. Y; is the measured process.
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A state space representation of CARMA(p,q)

Y(6)P +aa Y()P ™V 4+t a,Y(t) =
(W) + LW () + - + BaW (1))
What does this mean? In state-space form
Y(t) = B'X(t)

,3,:(1 BBy 0)
dX(t) = AX(t) + oRdW/(t)

0 1 0o - 0 X(t)

0 0 1 - 0 X(t)®
A=| 1 r L XM=

0 0 0o - 1 X(t)("*z)

—qp —Qp1 - o —a X(t)("‘l)

A state-space representation of the CARMA(p,q) process Y(t).
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The dynamics of the state vector:
dX(t) = AX(t) + cRdW(t)

is a linear stochastic differential equation which is easy to solve.

t
X(t) = expf,,(t_m) X(to) + a/ exp/,?,,(t_“) RdW (u)
———

to

prediction
innovation

@ The process is stationary if the eigenvalues of A have a negative real-part.

@ The variance matrix of the innovation, X:_;, solves the equations:

ATt 1o+ TetoA = 02 (expt=®) RR’ exp’ (") _RR)

@ Shoji & Ozaki (1998) derived this form of the equation and Tsai & Chan (2000) give
an algorithm for calculating X;_¢,.
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A review of spectral theory

ARMA process can be approximated by a weighted sum of trigonometric functions, with

random weights.

Ve > AN)e™
j=1

—T< << <7

A(Xj) uncorrelated complex random variablesE(A();)) = 0,
E(A)AN)) = of
sz variation due to the frequency \;,

F(\) = Z af is called the spectral CDF for Y;,

Aj<A
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On spectral properties of CARMA

@ A stationary process can be represented by a stochastic integral:
Y(t) = / (W)Y dZ(w)

where dZ(w) are uncorrelated complex random variables (e.g. a complex white-noise
process, i.e. in the case of normality, Z is a standard complex Wiener-process.), such

that E(dZ(w) =0, E(dZ(w)dZ(w)) =1, and E(dZ(w)dZ(X)) =0, if w # A. The
variance of the process is given by:<

V(Y(t)) = /O:o f(w)dw = 2/0OO f(w) dw.
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The CARMA process is frequently expressed with help of polynomials and the differential
operator D, DY (t) = Y'(t).

az)=2" 4z’ N+ + oz,

b(z) =1+ P1z+ -+ B2,
a(D)Y(t) = ob(D)dW(t).
Then the spectral density Y(t) will be:
_ 0” b(iw)b(—iw)
)= 2 a1

A characterization of the CARMA(p,q) process is that the spectum is a rational function.
The numerator in f(w) has to be two degrees lower than the denominator, i.e., g < p—1.
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The ctarma package | am still a beginner

¢

A collection of my own R and FORTRAN programs with help from EXPOKIT,
LAPACK and NUFFT.

A highly experimental version is out. Documenation very lousy.

©

©

The package aims to simulate and estimate CARMA(p,q) models.

¢

It is a beginner's project. Hints and suggestions welcome. How to write
documentation, how to organize history/changelog files etc. Also academic
suggestions and practical applications, etc.

Due to licensing issues | have now removed dependency on EXPOKIT an NUFFT.

o
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[[lustration

#
# Load ctarma package
#

> library(ctarma)

Loading required package:
Loading required package:
Loading required package:
Loading required package:
Loading required package:

ctarma loaded

a=c(2,40)
b=c(1,0.15)
sigma=6.5

V V. V & H #H

MASS
PolynomF
msm
nlme
numDeriv

Define a CARMA(2,1) model
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Simulate, exponential sampling times

vV # H H

tt=cumsum(rexp(1000))/10
y=carma.sim.timedomain(tt,a,b,sigma)

Define a reference model, CAR(1), Ornstein-Uhlenbeck
mO=ctarma(ctarmalist(y,tt,1,1,1))

Estimate the CAR(1)

>
#
#
#
>
#
#
#

mOe=ctarma.maxlik (m0)
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#

# Expand CARMA(1,0) to an equivalent CARMA(2,1)
#

> m21=ctarma.new(mOe)
#

> ctarma.loglik(m21)
[1] -326.4575

> ctarma.loglik(mOe)
[1] -326.4575

> m21%ahat

[1] 3.863464 2.863464
> m213$bhat

1] 11

> m21$sigma

[1] 1.619050
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#
# Estimate the CARMA(2,1)
#
> m2le=ctarma.maxlik (m21)

> summary (m21le)

$coeff

MLE STD-MLE
AHAT_1 2.1342112 0.25486121 (true value 2)
AHAT_2  41.1274657 1.72153107 (true value 40)
B_O 1.0000000 0.00000000
BHAT_1 0.1379970 0.02623775 (true value 0.15)
SIGMAHAT 6.9956494 0.65072796 (true value 6.5)
$loglik
[1] -52.97566 (log-likelihood for

CAR(1) -326.475)

$bic

[1] 87.51444
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#
# Frequency domain
#

estimation is also possible

> m21w=ctarma.whittle (m21,w=(0:2000)/100)

#
#

> ctarma.loglik(m21w)

[1] -77.18719
$coeff

MLE
AHAT_1 3.3292393
AHAT_2 40.8512040
B_O 1.0000000
BHAT_1 0.1823049
SIGMAHAT 6.0560132

$loglik
[1] -77.18719

Helgi Témasson

STD-MLE
0.26239118
0.06122925
0.00000000

NA
NA
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Spectral estimate

fhat

)
~
N
e
®
-
5

Figure: Empirical spectrum based on NUFFT
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Figure: The log-spectrum based on CARMA(2,1) estimates and 95% confidence interval.
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a1 Q2 ,31 g
Original time-scale 2 40 0.15 6.5
Time multiplied by 10 0.2 0.4 1.5 0.206
Time multiplied by 0.1 20 4000 0.015 205.55

Table: Impact of scaling of time on CARMA parameters.

> ctarma.scaletime (m21,10)$ahat

[1] 0.2 0.4

> ctarma.scaletime(m21,0.1)$ahat

[11 20 4000

#

# Multiplying time by a constant transforms the
#  parameter values

#

> ctarma.loglik(ctarma.scaletime (m21true,10))

[1] -53.31498

> ctarma.loglik(ctarma.scaletime (m21true,0.1))
[1] -53.31498
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Randomly spaced observations of a cycle

Flw) = O« 1 n 1
T oAr \(we +w)2+ 2% (we —w)? + a2
This 3 parameter models is a 4 parmeter CARMA(2,1)
YO (£) +2aYW(t) + (a° + w2)Y(t) =
w®(t)
oxy/ (w2 + a2 d(W(O) t +7>
Ve DAt U=

a1 =2a, m=a+w? pfi=1/Vw?+ a2,

o =0/ (wZ+22) =0"/B1.
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ai a2 by o
estimate- A =1 1.963 40.439 0.146 6.521

estimaEe -A =4 1851 39.178 0.145 6.348
se. -A=1 0.085 0.673 0.013 0.359

se.-A=4 0.121 1.032 0.031 0.726

Table: Exponential sampling of 5000 observations of a cyclical CARMA(2,1) (one replication).

a=ox=1, w:=2n(radians per time unit ) =
1 cycle per time unit

a1 =2, a»=1+(2r)> =40.478, f1 =0.157,0 = 6.362.
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A real data example: Average temperature on Earth

Jouzel & et al. (2007) show data for average temperature on Earh for the past 800.000
years. An unevenly sampled time series with about 5000 observations.

s

deltaT*

T T T
-800 -600 -400 -200 0
Time in K-years

Figure: History of the Earth's temperature.
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A CARMA(6,5) estimate of the of Earth's

tog(f(w))
-2
|

w  radikyear

Figure: The log-spectrum of an estimated CARMA(6,5).
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What about CO,? Are these series dependent?
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Are these series related (trend was removed)?

Scaled spectrum for temperatur and CO2

-———-- Temperature

scaled fiw)

000 005
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Dicussion

@ Non-linear generalizations are possible (if very good knowledge of the nature of
non-linearity is available)

@ Non-Gaussian innovations might be an alternative to non-linear models.
@ The package was written in FORTRAN (for speed) with an R-front for usability.

@ It was trown out of CRAN because of license issues and that the examples did not
run on Ripley's solaris machine.

©

A newer version based on Rcpp is available.

@ | might submit it to CRAN, R-forge or start a git-hub for distributing my packages. |
have JULIA versions, and extended precision versions on the way.
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Further possibilities

@ A multivariate version is on the way.
@ A Bayesian implementation based on smoothness-priors as well.

@ Application to tick-data, real-estate valuation, competition in fuel markets are
progressing (slowly) on my desk.

@ More ideas welcome.
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Conclusion

@ The continuous-time approach is feasible in science, macro-economics and finance.

@ | think it is also feasible in micro-data, e.g. on firms. It is conceivable that firms
share a dynamic structure, but we only observe few cycles or even fractions of cycles
per firm.

e THANK YOU
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