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A brief presentation

Thank you for inviting me to NHH. A pleasure to be in Bergen

I am professor e
onometri
s/statisti
s at Fa
ulty of E
onomi
s (used to be business

and e
onomi
s) at the University of I
eland.

I have a degree in applied mathemati
s from the University of I
eland and a Fil. Dr.

from the University of Gothenburg.

I have had a tenured position for 25 years and I have taught e
onometri
s/statisti
s

and �nan
ial mathemati
s (Ito, Bla
k-S
holes, et
.)

I am a 
omputing person and I write my own programs, R, MATLAB/OCTAVE,

FORTRAN, RCPP, JULIA et
. I have given a 
ourse on numeri
al methods in

E
onomi
s and Finan
e (the Miranda/Fa
kler book).

I have given 
onsultations in medi
al statisti
s and real-estate appre
iations

modeling.

Mostly my fo
us has been on time-series.
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Why 
ontinuous-time modelling?

Many phenomena in s
ien
e, biology, e
onomi
s, �nan
e, et
. evolve in time.

The variables of interest have a value at ea
h point in time.

Variables are frequently measured regularly, daily, monthly, quarterly, et
.

Traditional time-series methods treat su
h data using dis
rete-time dynami
s.

The regular sampling of data and ease of 
omputation favour the dis
rete-time

approa
h.

The parametrization of a dis
rete-time time-series model depends on the sampling

frequen
y.

The 
ontinuous-time approa
h is in some sense, more dire
t, non-syn
hronous data

analysis is natural (no su
h thing as missing data). Computationally somewhat more


ompli
ated.
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Plan of talk

An illustration of an applied approa
h des
ribed in Tómasson (2015).

In that paper the fo
us is on a linear sto
hasti
-di�erential-equation.

The ARMA approa
h is standard in many time-series-e
onometri
s appli
ations.

Non-linear SDE are also possible.

A few 
omments on R-programming and distributing a pa
kage.

A few 
omments on further possibilities.

Con
lusion.
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Continuous-time ARMA

The observations are measurements of dependent random variables. The

dependen
y stru
ture is due to the ordering in time.

Dynami
s 
an be des
ribed by di�erential equations if time is 
ontinuous and by

di�eren
e equations if time is dis
rete.

In many s
ienti�
 �elds, physi
s, �nan
e, e
onomi
s, biology, et
. theoreti
al

dynami
 pro
ess are des
ribed in 
ontinuous-time by means of di�erential equations

By doing the statisti
al modelling in 
ontinuous time we are in sense 
loser to the

real physi
al model

The probabilisti
 models for dynami
s are the sto
hasti
-di�erential-equations (SDE)
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The dis
rete-time ARMA is of the form:

Yt = φ
1

Yt−1

+ · · ·+ φpYt−p + εt − θ
1

εt−1

− · · · − θqεt−q

E(εt) = 0, when t 6= s E(εtεs) = 0, E(ε2t ) = σ2

ε .

This is the ARMA(p,q) model, we 
all εt a �white-noise�.

A simple way of 
at
hing dynami
s

The famous 
ookbook by Box & Jenkins (1976) popularized the use of ARMA

models in time series analysis.

Here time, t, is dis
rete, i.e. t = 1, 2, . . .

This is a linear sto
hasti
 di�eren
e equation.

By subtra
ting (and adding) Yt−1

from the de�nition of the ARMA(p,q), the ARMA 
an

be written as:

∆p
Yt + φ̃

1

∆p−1

Yt + · · ·+ φ̃pYt = εt + · · ·
∆ = the di�eren
e operator , ∆Yt = Yt − Yt−1

.

We would like to have an analogous 
ontinous-time version

Helgi Tómasson Time-series modeling in 
ontinuous-time Seminar Norges HandelshøjskoleDe
ember 3rd, 2015 6 / 40



Answer:

Y
(p)(t) + α

1

Y
(p−1)(t) + · · ·+ αpY (t) =

σ d(W (t) + β
1

W
(1)(t) + · · ·βqW

(q)(t)).

Here Y (p)(t) denotes the p-the derivative of pro
ess Y (t). The dW (t) denotes the
(normal) 
ontinuous-time white-noise. W (t) is the Wiener pro
ess.

Stri
ly mathemati
ally speaking the white noise dW (t) does not exist, let alone higher
derivatives. Therefore the formula de�ning the CARMA(p,q) is of a rather formal nature.

The CARMA, however is well de�ned. The �rst p derivatives of the CARMA pro
ess

Y (t) exist, so the path of Y (t) is "smooth".
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E.g., the CAR(1) pro
ess, (Ornstein-Uhlenbe
k):

dY (t) = −αY (t) dt + σ dW (t), implies

Y (t) =

∫ t

t
0

(−αY (s) ds + σ dW (s))

I.e. Y (t) is an integral, the pattern must be smooth.

The AR(1) is a subset of AR(2) and all ARMA(p,q) with p≥1.
The 
ontinuous-time AR(1), CAR(1), is not a subset of CAR(2). I.e. the CAR(p)

family does not form a sequen
e of statisti
ally nested models.

The family of CARMA(p,q) models is a subset of CARMA(p+1,q+1).

Helgi Tómasson Time-series modeling in 
ontinuous-time Seminar Norges HandelshøjskoleDe
ember 3rd, 2015 8 / 40



To be able to generalize from a single realization of a sto
hasti
 pro
ess, some kind

of stability 
ondition is ne
essary. Stationarity (and ergodi
ity) is the formal


ondition in time-series analysis.

The stationarity 
onditions restri
ts the parameter spa
e of ARMA and CARMA

models.

The ARMA model 
an be stated by use of polynomial fun
tions of the ba
kward

operator, BYt = Yt−1

,

Φ(B)Yt = Θ(B) εt ,

Φ(z) = 1 − φ
1

z − · · · − φp z
p,

Θ(z) = 1 − θ
1

z − · · · − θq z
q.
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Similarly the CARMA model 
an be stated by use of polynomial fun
tions of the

di�erential operator D , D Y (t) = Y ′(t) .

Y
(p)(t) + α

1

Y
(p−1)(t) + · · ·+ αpY (t) =

σ d(W (t) + β
1

W
(1)(t) + · · ·βqW

(q)(t)),

a(D)Y (t) = σ db(D)W (t),

a(z) = z
p + α

1

z
p−1 + · · ·+ αp,

b(z) = 1+ β
1

z + · · ·+ βq z
q.
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The ARMA pro
ess is stationary if the roots of Φ(z) are outside the unit 
ir
le.

The CARMA pro
ess is stationary if the roots of a(z) have negative real parts.

Enfor
ing the stationarity restri
tion is 
ompli
ated if p> 2.

Routh-Hurwitz algorithm is a well known (100+ years old) algorithm for 
he
king

the 
ondition of a(z).

In this work a method a method based on Pham & Breton (1991) is used.

Another possibility is to 
ombine the 
onditions for Φ(z) using methods des
ribed in

Monahan (1984) and methods des
ribed in Bel
her, Hampton & Tunni
li�e Wilson

(1994).
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Estimation and simulation methods

Dis
rete obersvations of a 
ontinuous pro
ess are of the form:

y(t
1

), y(t
2

), . . .

The likelihood fun
tion of a CARMA is 
al
ulated by use of state spa
e

representation and the Kalman �lter.

The log-likelihood fun
tion 
an be maximized of the spa
e of stationary CARMA by

using a numeri
al optimization routine.

If a 
andidate, f̂ (ω), for the spe
tral density is available another way would be to

use a Whittle-type estimator and minimize something like:

min

α,β ,σ

∫
∞

−∞

(log(f (ω)) + f̂ (ω)/f (ω))dω,

repla
ing the integral with a sum over "appropriate" frequen
ies.
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Simulation of CARMA in the time domain is straightforward by using state spa
e

and Kalman �lter.

A frequen
y domain representation of CARMA:

Y (t) =

∫
∞

−∞

exp(iω t) dZ (ω),

E(dZ (ω)dZ (ω)) = f (ω)dω,

E(dZ (ω)) = 0,

E(dZ (ω)dZ (λ)) = 0, λ 6= ω.


an be use to motivate frequen
y domain simulation approa
hes.
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Then, an interval (−ωc , ωc), that represents a high proportion of the variability in Y (t) is

hosen. The interval (0, ωc) is then divided into M subintervals with ∆i = (ωi −ωi−1

). A

lassi
al approa
h is that of Ri
e (1954):

YRice(t) =
M∑

i=1

2

√

f (ωi)∆i 
os(ωi t − Ui),

with Ui independent U(−π, π).

Sun & Chaika (1997) give a modi�ed version:

YSC (t) =
M∑

i=1

Ri 
os(ωi t − Ui), with Ui independent U(−π, π),

and

Ri independent Rayleigh with E(R2

i ) = 4f (ωi)∆i .

The simulated pro
esses YRice(t) and YSC (t) have the same se
ond order properties as a

theoreti
al normal Y (t) with spe
tral density f (ω). YSC (t) is normally distributed,
whereas YRice(t) is only approximately normal.
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Some numeri
al issues

Inverting matri
es: Solved by slightly modi�ed LAPACK FORTRAN routines.

Matrix exponential: Solved by FORTRAN subroutines by Sidje (1998).

Fourier transform for non-uniform time s
ale: Solved by FORTRAN subroutines by

Greengard & Lee (2004).

Various numeri
al tasks, maximizations, random-numer generations, et
: Solved by

various R-pa
kages, MASS, PolynomF, msm, nlme, numDeriv, (R Development Core

Team, 2011).
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On state spa
e representations

Imagine a se
ond order linear di�erential equation:

x
′′(t) + a

1

x
′(t) + a

2

x(t) = 0, 
an be written as

z(t) =

[
x(t)
x ′(t)

]

z

′(t) + Az(t) = 0, with

A =

[
0 −1
a
2

a
1

]

z

′(t) + Az(t) =

[
x ′(t)
x ′′(t)

]

+

[
−x ′(t)

a
2

x(t) + a
1

x ′(t)

]

=

[
0

0

]
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A state spa
e representation of ARMA(p,q)

Let β = (1, θ
1

, . . . , θq) and

X t =








Xt−p+1

Xt−p+2

.

.

.

Xt







, Tt =










0 1 0 · · · 0

0 0 1 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 1

φp φp−1

φp−2

· · · φ
1










,

R = [0 0 · · · 0 1]′

X t+1 = TX t + Rεt+1,Yt = β
′

X t

∆X t+1 = X t+1 − X t = (T − I )X t + noise = AX t + noise

see, e.g., (Bro
kwell & Davis, 1991) 
hatper 12. Yt is the measured pro
ess.
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A state spa
e representation of CARMA(p,q)

Y (t)(p) + α
1

Y (t)(p−1) + · · ·+ αpY (t) =

σ(W (t)(1) + β
1

W (t)(2) + · · ·+ βqW (t)(q))

What does this mean? In state-spa
e form

Y (t) = β
′

X (t)

β
′ = (1 β

1

· · ·βq 0)

dX (t) = AX (t) + σRdW (t)

A =










0 1 0 · · · 0

0 0 1 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 1

−αp −αp−1

· · · · · · −α
1










, X (t) =










X (t)

X (t)(1)

.

.

.

X (t)(p−2)

X (t)(p−1)










A state-spa
e representation of the CARMA(p,q) pro
ess Y (t).
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The dynami
s of the state ve
tor:

dX (t) = AX (t) + σRdW (t)

is a linear sto
hasti
 di�erential equation whi
h is easy to solve.

X (t) = exp

A(t−t
0

)
M X (t

0

)
︸ ︷︷ ︸

predi
tion

+ σ

∫ t

t
0

exp

A(t−u)
M RdW (u)

︸ ︷︷ ︸

innovation

The pro
ess is stationary if the eigenvalues of A have a negative real-part.

The varian
e matrix of the innovation, Σt−t
0

solves the equations:

AΣt−t
0

+ Σt−t
0

A
′ = σ2(exp

A(t−t
0

)
M RR

′

exp

A′(t−t
0

)
M −RR ′)

Shoji & Ozaki (1998) derived this form of the equation and Tsai & Chan (2000) give

an algorithm for 
al
ulating Σt−t
0

.
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A review of spe
tral theory

ARMA pro
ess 
an be approximated by a weighted sum of trigonometri
 fun
tions, with

random weights.

Yt ≃
n∑

j=1

A(λj )e
itλj

−π < λ
1

< · · · < λn < π

A(λj ) un
orrelated 
omplex random variablesE(A(λj)) = 0,

E(A(λj) ¯A(λj )) = σ2

j

σ2

j variation due to the frequen
y λj ,

F (λ) =
∑

λj<λ

σ2

j is 
alled the spe
tral CDF for Yt ,
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On spe
tral properties of CARMA

A stationary pro
ess 
an be represented by a sto
hasti
 integral:

Y (t) =

∫
∞

−∞

e
iωt

f (ω)1/2 dZ (ω)

where dZ (ω) are un
orrelated 
omplex random variables (e.g. a 
omplex white-noise

pro
ess, i.e. in the 
ase of normality, Z is a standard 
omplex Wiener-pro
ess.), su
h

that E(dZ (ω) = 0, E(dZ (ω) ¯
dZ (ω)) = 1, and E(dZ (ω) ¯

dZ (λ)) = 0, if ω 6= λ. The
varian
e of the pro
ess is given by:<

V (Y (t)) =

∫
∞

−∞

f (ω)dω = 2

∫
∞

0

f (ω)dω.
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The CARMA pro
ess is frequently expressed with help of polynomials and the di�erential

operator D , DY (t) = Y ′(t).

a(z) = z
p + α

1

z
p−1 + · · ·+ αpz ,

b(z) = 1+ β
1

z + · · ·+ βqz
q,

a(D)Y (t) = σb(D)dW (t).

Then the spe
tral density Y (t) will be:

f (ω) =
σ2

2π

b(iω)b(−iω)

a(iω)a(−iω)

A 
hara
terization of the CARMA(p,q) pro
ess is that the spe
tum is a rational fun
tion.

The numerator in f (ω) has to be two degrees lower than the denominator, i.e., q ≤ p− 1.
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The 
tarma pa
kage I am still a beginner

A 
olle
tion of my own R and FORTRAN programs with help from EXPOKIT,

LAPACK and NUFFT.

A highly experimental version is out. Do
umenation very lousy.

The pa
kage aims to simulate and estimate CARMA(p,q) models.

It is a beginner's proje
t. Hints and suggestions wel
ome. How to write

do
umentation, how to organize history/
hangelog �les et
. Also a
ademi


suggestions and pra
ti
al appli
ations, et
.

Due to li
ensing issues I have now removed dependen
y on EXPOKIT an NUFFT.
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Illustration

#

# Load 
tarma pa
kage

#

> library(
tarma)

Loading required pa
kage: MASS

Loading required pa
kage: PolynomF

Loading required pa
kage: msm

Loading required pa
kage: nlme

Loading required pa
kage: numDeriv


tarma loaded

#

# Define a CARMA(2,1) model

#

> a=
(2,40)

> b=
(1,0.15)

> sigma=6.5
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#

# Simulate, exponential sampling times

#

> tt=
umsum(rexp(1000))/10

> y=
arma.sim.timedomain(tt,a,b,sigma)

#

# Define a referen
e model, CAR(1), Ornstein-Uhlenbe
k

#

> m0=
tarma(
tarmalist(y,tt,1,1,1))

#

# Estimate the CAR(1)

#

m0e=
tarma.maxlik(m0)
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#

# Expand CARMA(1,0) to an equivalent CARMA(2,1)

#

> m21=
tarma.new(m0e)

#

> 
tarma.loglik(m21)

[1℄ -326.4575

> 
tarma.loglik(m0e)

[1℄ -326.4575

> m21$ahat

[1℄ 3.863464 2.863464

> m21$bhat

[1℄ 1 1

> m21$sigma

[1℄ 1.619050
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#

# Estimate the CARMA(2,1)

#

> m21e=
tarma.maxlik(m21)

> summary(m21e)

$
oeff

MLE STD-MLE

AHAT_1 2.1342112 0.25486121 (true value 2)

AHAT_2 41.1274657 1.72153107 (true value 40)

B_0 1.0000000 0.00000000

BHAT_1 0.1379970 0.02623775 (true value 0.15)

SIGMAHAT 6.9956494 0.65072796 (true value 6.5)

$loglik

[1℄ -52.97566 (log-likelihood for

CAR(1) -326.475)

$bi


[1℄ 87.51444

>
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#

# Frequen
y domain estimation is also possible

#

> m21w=
tarma.whittle(m21,w=(0:2000)/100)

#

#

> 
tarma.loglik(m21w)

[1℄ -77.18719

$
oeff

MLE STD-MLE

AHAT_1 3.3292393 0.26239118

AHAT_2 40.8512040 0.06122925

B_0 1.0000000 0.00000000

BHAT_1 0.1823049 NA

SIGMAHAT 6.0560132 NA

$loglik

[1℄ -77.18719
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Figure: Empiri
al spe
trum based on NUFFT
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Figure: The log-spe
trum based on CARMA(2,1) estimates and 95% 
on�den
e interval.
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α
1

α
2

β
1

σ

Original time-s
ale 2 40 0.15 6.5

Time multiplied by 10 0.2 0.4 1.5 0.206

Time multiplied by 0.1 20 4000 0.015 205.55

Table: Impa
t of s
aling of time on CARMA parameters.

> 
tarma.s
aletime(m21,10)$ahat

[1℄ 0.2 0.4

> 
tarma.s
aletime(m21,0.1)$ahat

[1℄ 20 4000

#

# Multiplying time by a 
onstant transforms the

# parameter values

#

> 
tarma.loglik(
tarma.s
aletime(m21true,10))

[1℄ -53.31498

> 
tarma.loglik(
tarma.s
aletime(m21true,0.1))

[1℄ -53.31498
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Randomly spa
ed observations of a 
y
le

f (ω) =
σ∗

2

4π

(
1

(ωc + ω)2 + a2
+

1

(ωc − ω)2 + a2

)

This 3 parameter models is a 4 parmeter CARMA(2,1)

Y
(2)(t) + 2aY

(1)(t) + (a2 + ω2

c )Y (t) =

σ∗

√

((ω2

c + a2)d

(

W
(0)(t) +

W (1)(t)√
ω2

c + a2

)

α
1

= 2a, α
2

= a
2 + ω2

c , β
1

= 1/
√

ω2

c + a2,

σ = σ∗

√

((ω2

c + a2) = σ∗/β
1

.
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a
1

a
2

b
1

σ

estimate - ∆̄ = 1 1.963 40.439 0.146 6.521

estimate - ∆̄ = 4 1.851 39.178 0.145 6.348

s.e. - ∆̄ = 1 0.085 0.673 0.013 0.359

s.e. - ∆̄ = 4 0.121 1.032 0.031 0.726

Table: Exponential sampling of 5000 observations of a 
y
li
al CARMA(2,1) (one repli
ation).

a = σ∗ = 1, ωc = 2π( radians per time unit ) =

1 
y
le per time unit

α
1

= 2, α
2

= 1 + (2π)2 = 40.478, β
1

= 0.157, σ = 6.362.
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A real data example: Average temperature on Earth

Jouzel & et al. (2007) show data for average temperature on Earh for the past 800.000

years. An unevenly sampled time series with about 5000 observations.
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Figure: History of the Earth's temperature.
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A CARMA(6,5) estimate of the log(spectrum) of Earth’s temperature

Figure: The log-spe
trum of an estimated CARMA(6,5).
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What about CO

2

? Are these series dependent?
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Are these series related (trend was removed)?
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Di
ussion

Non-linear generalizations are possible (if very good knowledge of the nature of

non-linearity is available)

Non-Gaussian innovations might be an alternative to non-linear models.

The pa
kage was written in FORTRAN (for speed) with an R-front for usability.

It was trown out of CRAN be
ause of li
ense issues and that the examples did not

run on Ripley's solaris ma
hine.

A newer version based on R
pp is available.

I might submit it to CRAN, R-forge or start a git-hub for distributing my pa
kages. I

have JULIA versions, and extended pre
ision versions on the way.
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Further possibilities

A multivariate version is on the way.

A Bayesian implementation based on smoothness-priors as well.

Appli
ation to ti
k-data, real-estate valuation, 
ompetition in fuel markets are

progressing (slowly) on my desk.

More ideas wel
ome.
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Con
lusion

The 
ontinuous-time approa
h is feasible in s
ien
e, ma
ro-e
onomi
s and �nan
e.

I think it is also feasible in mi
ro-data, e.g. on �rms. It is 
on
eivable that �rms

share a dynami
 stru
ture, but we only observe few 
y
les or even fra
tions of 
y
les

per �rm.

THANK YOU
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