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Plan of talk

• A brief review of parameterization of ARMA time-series models

• The role of the a prior distribution in the Bayesian estimation

• Review of partial fractions and residue calculus

• Implementation of smoothness priors in ARMA models

• Exact calculation of the distance between spectral shapes

• Implementation in R

• Conclusion and discussion



On the ARMA model

• A noise observation of a linear differential equation:

y ′′ + ay ′ + by = 0, non-stochastic

y ′′ + ay ′ + by = a stochastic concept.

• A classical discrete time version:

Yt = φ1Yt−1 + εt + θ1εt−1, εt white noise

• Or a continuous time version:

Y ′(t) + αY (t) = σ(dW (t) + βd (2)W (t)), dW (t) white-noise.



• A representation of a continous-time ARMA(p,q), CARMA(p,q) process in
terms of the differential operator D is:

Y (p)(t) + α1Y
(p−1)(t) + · · ·+ αpY (t) =

σd(W (t) + β1W
1(t) + · · ·+ βqW

(q))(t)),

or α(D)Y (t) = σβ(D) dW (t),

α(z) = zp + α1z
p−1 + · · ·+ αp,

β(z) = 1 + β1z + · · ·+ βqz
q.

• The spectral density of Y (t) is a rational function:

f (ω) =
σ2

2π

β(iω)β(−iω)

α(iω)α(−iω)
.

A key feature in this paper. Similar formulas apply for the ususal
discrete-time ARMA models. Then the polynomials are in exp(−iω).



• For stationarity we need the realpart of the roots of the polynomal α(z) to
be negative. Similar to the discrete-time case where roots of a certain
polynomial need to be on the correct side of the unit circle.

• In continuous-time we also need p > q.



The role of the prior in Bayesian estimation

• Bayesian inference about a parameter θ is based on the
posterior-distribution which is proportional to the likelihood-function times
the prior distribution.

π(θ|data) ∝ likelihood(data|θ)︸ ︷︷ ︸
model

π(θ)︸︷︷︸
prior

• Then a Bayesian estimator can be calculated, e.g. by calculating the
expected value, or the mode of posterior etc.



An example, the normal mean

• A possible approach for Bayesian inference on µ in N(µ, σ2), σ known is:

X |µ, σ ∼ N(µ, σ2),

µ|σ ∼ N(µ0, σ
2
0), σ0 = τσ.

Given data, x1, . . . , xn, and reparameterizing, v = 1/σ, v0 = k0v , the
log-posterior is (σ known):

log(p(µ, v |x1, . . . , xn, µ0, k0)) =

constant +
n

2
log(v)− v

n∑
i=1

(xi − µ)2/2︸ ︷︷ ︸
A

+
1

2
log(v)− k0v(µ− µ0)2/2︸ ︷︷ ︸

B

.



• The number k0 expresses the certainty in the prior. If k0 is set to zero and
the log-posterior (as a function of µ) is maximized the result is the ML
estimator and a nonzero k0 biases the ML-estimate towards the prior (µ0).

• Maximization of the log-posterior can be interpreted as a penalized
maximum-likelihood.

• I.e. a deviance from µ0 is penalized.

• AIC, BIC, R2-adjusted are examples of penalizing terms.

• The added term penalizes for a more complicated (less reasonable) model.



The role of parameters in ARMA models

• The parameters in the polynomials α(z) and β(z) are auto-correlation
parameters, and the parameter σ is a scale parameter.

• If normality is assumed and the polynomials α(z) and β(z) were known
inference about σ is similar to inference about σ in a normal model. E.g.
a posterior like:

gamma(a + n/2, b + y ′M(α,β)−1y/2).

• It is very difficult to have a good intuition about the auto-correlation
function.

• The interpretation of the spectral density is easier and therefore perhaps
more natural to express a prior on the parameters in the polynomials α(z)
and β(z) based on properties of the spectral function.

• One might e.g. state a prior on the smoothness of the spectral function or
its closeness to a particular spectral function.



More than the number of parameters

• The AIC, BIC and the R2-adjusted all penalize by using a function of the
number of estimated parameters. The number of parameters is not always
the natural way of grading complexity. In regression it seems reasonable
that the model:

y = a + bx + e,

is simpler than:

y = sin(cos(ax))a exp(−bx)/xb + e.

• The ARMA(1,0) model:

dY + Y = dW , ,

is actually the same as:

Y (4) + 4Y (3) + 6Y (2) + 4Y (1) + Y = d(W + 3W (1) + 3W (2) + W (3)).

That is the ARMA(1,0) is a special case of (many) ARMA(4,3) models.
Estimation of six additional parameters might result in a spectral function
with an unreasonable shape. However, it might be of interest to estimate
a model which is more complicated than an AR(1). One might, however,
want restrict the freedom of the additional parameters.



• In time-series analysis, just as in non-parametric regression a smoothness
restriction may be enforced on the fitted values. That is the sharp spikes
and turns are penalized. In economics a well known procedure of this type
is the Hodrick-Prescott filter.
In stationary time-series analysis a natural form of a priori information
might consist of a specification of the spectral function or some features of
the spectral function. In analogy with the Hodrick-Prescott filter one can
introduce a term that penalizes for sharp spikes and turns, e.g., a term
proportional to:∫ ∞

−∞
(f ′′(ω))2dω.

• One might also want that the estimated spectrum is close to a particular
spectral function.



How to measure distance between functions?

• Here the I only discuss the Kullback-Leibler distance measure.

KLD(f , f ∗) =

∫ ∞
−∞

log(
f (ω)

f ∗(ω)
)f (ω)dω.

• Here I use f ∗ because I do not work directly with the distance between
two spectral curves, but only with the proportionality between two spectral
curves:

f (ω) =
β(iω)β(−iω)

α(iω)α(−iω)
,

f ∗(ω) = σ∗
β0(iω)β0(−iω)

α0(iω)α0(−iω)
,

where σ∗ is chosen such that,∫ ∞
−∞

f (ω)dω =

∫ ∞
−∞

f ∗(ω)dω.



Some computational aspects

• The fact that the spectral function of an ARMA model is rational allows
for an exact calculation of integrals like:∫ ∞

−∞
(f ′′(ω))2dω.

• By use of partial fractions the function:

f (ω) =
σ2

2π

β(iω)β(−iω)

α(iω)α(−iω)
=
σ2

2π

∏q
j=1(1 + µ2

j ω
2)∏p

j=1(ω2 + λ2
j )
,

can be written as:

f (ω) =
σ2

2π
(

a1
ω − iλ1

+ · · · ap
w − iλp

+
b1

ω + iλ1
+ · · · bp

ω + iλp
),

where λj are the roots of the AR polynomial, α(z). Another way is:

f (ω) =
σ2

2π
(

c1
ω2 + λ2

1

+ · · ·+ cp
ω2 + λ2

p
).



Residue calculus

• The residue calculus of complex analysis offers a useful tool for calculating
integrals of rational functions. The residue theorem states that∫

h(x)dx = 2πi
∑

Res(h(z)), over a certain path,

where the sum is evaluated over the residues of the function h (Kreyszig,
1999).

•

f ′′(ω) =
σ2

2π
(

2a1
(ω − iλ1)3

+ · · · 2ap
(w − iλp)3

+
2b1

(ω + iλ1)3
+ · · · 2bp

(ω + iλp)3
),

f ′′(ω)2 will contain p terms of the type aj/(ω − iλj)
6 and p terms

bk/(ω + iλk)6 and p(p − 1) terms, k 6= j , of the type
akaj/((ω − iλk)3)(ω − iλj)

3) and similarly p(p − 1) terms, k 6= j ,
bkbj/((ω + iλj)(ω + iλj)). The residues in the upper half-plane of these
terms sums to zero. The integral will be the sum of the 2p2 terms of the
type

akbj/((ω − iλk)3(ω + iλj)
3).



The residues of these terms are of the form:

3 · 4akbj/(−(iλk + iλj)
5),

and the integral therefore,∫ ∞
−∞

(f ′′(ω))2dω = 2πi · 2
p∑

k=1

p∑
j=1

3 · 4 akbj
−(iλk + iλj)5

.

Similarly one can use residue calculus to create of measure of steep hills in the
spectrum,∫ ∞

−∞
(f ′(ω))2dω,

or weighing (f ′(ω))2 or (f ′′(ω))2 with a rational function.

• I have checked this numerically. Dual roots will give somewhat more
complicated formulas.



More partial fractions

The partial fraction trick can also be applied to calculate the Kullback-Leibner
(KL) metric, as a measure of the distance between two functions, f and f0 (e.g.
a prior).

D(f1; f0) =

∫
f1(ω) log(f1(ω))dω −

∫
f1(ω) log(f0(ω))dω.

Using the second partial fraction formulation of the spectral density the
termsthat need to be integrated will be of the form:

− c1,k
(ω2 + λ2

1,k)
log(w 2 + λ2

1,j), and
c1,j

(ω2 + λ2
1,k)

log(1 + µ2
1,jw

2).



∫ ∞
0

log(1 + µ2x2)
dx

x2 + λ2
=

π√
λ2

log(
√
λ2µ2 + 1),∫ ∞

0

log(p2 + x2)/(q2 + r 2x2) =
π

pr
log((q + pr/r)).

Here the square-root is take such that the real part of the square-root is
positive (Gradshteyn & Ryzhik, 2007, eq 1, page 560). By use of partial
fractions the KL distance can be written as:∫ p1∑
k=1

c1,k
ω2 + λ2

1,k

(

q1∑
j=1

log(1 + µ2
1,jω

2))dω −
∫ p1∑

k=1

c1,k
ω2 + λ2

1,k

(

p1∑
j=1

log(ω2 + λ2
1,j))dω−

∫ p1∑
k=1

c1,k
ω2 + λ2

1,k

(

q0∑
j=1

log(1 + µ2
0,jω

2))dω +

∫ p1∑
k=1

c1,k
ω2 + λ2

1,k

(

p0∑
j=1

log(ω2 + λ2
0,j))dω.

This integral consists of p1 × q1 + p2
1 + p1 × q0 + p1 × p0 terms and each of

them can be calculated by the use of the above formula,

π(

p1∑
k=1

q1∑
j=1

c1,k log(1 + λ1,kµ1,j)

λ1,k
−

p1∑
k=1

p1∑
j=1

c1,k log(1 + λ1,jλ1,k)

λ1,j
+

p1∑
k=1

q0∑
j=1

c1,k log(1 + λ1,kµ0,j)

λ0,j
−

p1∑
k=1

p0∑
j=1

c1,k log(1 + λ1,kλ0,j)

λ0,j
).



Implementation in R

• I have implemented the partial fractions and some of the above in R a R
package ctarmaRcpp.

•

1/(6 + 11x + 6x2 + x3) =
1

2(x + 3)
− 1

x + 2
+

1

2(x + 1)
,

here the roots are -1,-2,-3, and the function partfrac1 gives the
coefficients in the partial fraction (all roots distinct).

partfrac1(c(6,11,6,1),1,c(-1,-2,-3),1)

[1] 0.5 -1.0 0.5

The partial fraction enables the calculation of the Kullback-Leibler
distance between two spectral shapes.



A data set on the Earth’s temperature for the past 800.000 years is used as an
illustration on an unevenly sampled time series. The ctarmaRcpp package
bundles data and model into a R object. Similar to (Tómasson, 2015).The
maximized log-likelihood of a continuous-time ARMA(2,1) is contained in m2e.
The log-likelihood of m2e is calculate by:

> ctarma.loglik(m2e)

[1] -5701.584

An ARMA(4,3) gives log-likelihood of -5664.627, and an ARMA(6,5) a
log-likelihood of -5660.819. The coefficients of the estimated ARMA(2,1), are

[1] 1792.32808 13.39429

> m2e$bhat

[1] 1.00000000 0.02315723

> m2e$sigma

[1] 1331.322

Similarly the estimated coefficients of the ARMA(4,3) are:

> m4e$ahat

[1] 1497.15420 3410.91710 2328.64602 28.11924

> m4e$bhat

[1] 1.0000000 1.2087125 0.3772288 0.0128648

> m4e$sigma

[1] 2239.939



The Kullback-Leibler distance is calculated with the function kullbackDist

(here the implementation is between spectral shapes).

> kullbackDist(m4e$ahat,m4e$bhat,m4e$sigma,m2e$ahat,m2e$bhat)

[1] 1.172553

and for the ARMA(6,5)

> kullbackDist(m6e$ahat,m6e$bhat,m6e$sigma,m2e$ahat,m2e$bhat)

[1] 3.706201



Temperature on Earth for 800 Kyears
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Figure: Temperature on Earth. About 5500 observations over 800.000 years.



Log CARMA(20,19) spectrum
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Figure: Log of ML-estimated CARMA(20,19) spectrum of Earth data.



Conclusion and discussion

• Technically it might be boring to try to find all the roots of a polynomial
of degree 20. Perhaps it is better to perform numercial optimization
directly in terms of the roots of the polynomial.

• The fact that the spectral function is rational can be exploited in more
ways than shown here.

• The partial fraction trick along with the residue calculus can be used in
calculation Bayesian, and semi-Bayesian estimators.
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