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On the ARMA model

o A noise observation of a linear differential equation:

y" +ay’ + by =0, non-stochastic
y" + ay’ + by = a stochastic concept.

e A classical discrete time version:
Y =¢1Yeo1 + et + 016¢—1, &+ white noise
e Or a continuous time version:

Y'(t) + aY(t) = o(dW(t) + BdPW(t)), dW(t) white-noise.



e A representation of a continous-time ARMA(p,q), CARMA(p,q) process in
terms of the differential operator D is:

YO+ YP () 4+ +a,Y(t) =
od(W(t) + BLW(t) + - - + B,W (1)),
or a(D) Y(t) = oB(D) dW(t),
a(z) =2+ 4+,
B(z) =1+ piz+ -+ Bgz".
e The spectral density of Y(t) is a rational function:
_0° B(iw)B(—iw)
"= 2 a(ial-)

A key feature in this paper. Similar formulas apply for the ususal
discrete-time ARMA models. Then the polynomials are in exp(—iw).



e For stationarity we need the realpart of the roots of the polynomal a(z) to
be negative. Similar to the discrete-time case where roots of a certain
polynomial need to be on the correct side of the unit circle.

e In continuous-time we also need p > g.



The role of the prior in Bayesian estimation

e Bayesian inference about a parameter 6 is based on the
posterior-distribution which is proportional to the likelihood-function times
the prior distribution.

m(0|data)  likelihood(datalf) =(6)
N AN

model prior

e Then a Bayesian estimator can be calculated, e.g. by calculating the
expected value, or the mode of posterior etc.



An example, the normal mean

e A possible approach for Bayesian inference on p in N(u,0?), o known is:
Xlp o ~ N(u, %),
plo ~ N(uo,08), oo = To.
Given data, xi, ..., xn, and reparameterizing, v =1/0, vy = kov, the

log-posterior is (o known):

lOg(p(,U” V|X17 e 7Xn7 ,LLO, k())) =

n

1
constant + g log(v) — v~ (xi — 1)’ /2 + 5 log(v) — kov(n — o)’ /2.

i=1

B
A



The number ko expresses the certainty in the prior. If kg is set to zero and
the log-posterior (as a function of 1) is maximized the result is the ML
estimator and a nonzero kg biases the ML-estimate towards the prior (j0).

Maximization of the log-posterior can be interpreted as a penalized
maximum-likelihood.

l.e. a deviance from pyo is penalized.
AIC, BIC, R?-adjusted are examples of penalizing terms.

The added term penalizes for a more complicated (less reasonable) model.



The role of parameters in ARMA models

The parameters in the polynomials a(z) and B(z) are auto-correlation
parameters, and the parameter o is a scale parameter.

If normality is assumed and the polynomials a(z) and 3(z) were known
inference about o is similar to inference about o in a normal model. E.g.
a posterior like:

gamma(a+ n/2, b+ y M(c, B)fly/2).
It is very difficult to have a good intuition about the auto-correlation

function.

The interpretation of the spectral density is easier and therefore perhaps
more natural to express a prior on the parameters in the polynomials a(z)
and (3(z) based on properties of the spectral function.

One might e.g. state a prior on the smoothness of the spectral function or
its closeness to a particular spectral function.



More than the number of parameters

e The AIC, BIC and the R2-adjusted all penalize by using a function of the
number of estimated parameters. The number of parameters is not always
the natural way of grading complexity. In regression it seems reasonable
that the model:

y=a+ bx+e,
is simpler than:
y = sin(cos(ax))’ exp(—bx)/x" + e.
e The ARMA(1,0) model:
dY + Y =dW, |
is actually the same as:
YO £ 4y® L 6y® Lay®W 4y — g(W + 3w 4 3w@ 4 W),

That is the ARMA(1,0) is a special case of (many) ARMA(4,3) models.
Estimation of six additional parameters might result in a spectral function
with an unreasonable shape. However, it might be of interest to estimate
a model which is more complicated than an AR(1). One might, however,
want restrict the freedom of the additional parameters.



e In time-series analysis, just as in non-parametric regression a smoothness
restriction may be enforced on the fitted values. That is the sharp spikes
and turns are penalized. In economics a well known procedure of this type
is the Hodrick-Prescott filter.

In stationary time-series analysis a natural form of a priori information
might consist of a specification of the spectral function or some features of
the spectral function. In analogy with the Hodrick-Prescott filter one can
introduce a term that penalizes for sharp spikes and turns, e.g., a term
proportional to:

| ).

e One might also want that the estimated spectrum is close to a particular
spectral function.



How to measure distance between functions?

o Here the | only discuss the Kullback-Leibler distance measure.

KLD(f, £*) = / ~ Jog( f’:((‘"w)))f(w)dw.

—o0

e Here | use f* because | do not work directly with the distance between
two spectral curves, but only with the proportionality between two spectral
curves:

Bliw)B(—iw)

aliw)a(—iw)’
+ Bo(iw)Bo(—iw)

ao(iw)aog(—iw)’

f(w) =
fflw)y=0c

where o* is chosen such that,

/j:o f(w)dw = /j:o f(w)dw.



Some computational aspects

e The fact that the spectral function of an ARMA model is rational allows
for an exact calculation of integrals like:

[y

— o0

o By use of partial fractions the function:

o) = & BEBC) _ o [T+ )
- 2ma(iw)a(—iw) 2w [17 (w2 +27) 7

can be written as:

2
O % b b
BT vy wh ey v W

f(w) ):

where ); are the roots of the AR polynomial, a(z). Another way is:

2 a

A T T
flw) = 27r(w2+/\§ + +w2+/\%)'



Residue calculus

e The residue calculus of complex analysis offers a useful tool for calculating
integrals of rational functions. The residue theorem states that

/h(x)dx = 27riz Res(h(z)), over a certain path,

where the sum is evaluated over the residues of the function h (Kreyszig,
1999).

o? 2a; 2a, 2b 2b,

B o v R (72 s W L LR P v 2

f”(w)? will contain p terms of the type a;j/(w — i\;)° and p terms

b /(w + ixk)® and p(p — 1) terms, k # j, of the type

akaj/((w — ix)*)(w — i\)*) and similarly p(p — 1) terms, k # j,
bibj/((w + iX\j)(w + iAj)). The residues in the upper half-plane of these
terms sums to zero. The integral will be the sum of the 2p? terms of the

type
acbi/((w — ixe)*(w + iN)?).



The residues of these terms are of the form:
3-dab;/(—(ide + X)),
and the integral therefore,
(oS} 5 P P akb'
' (w))*dw = 2mi - 2 34—
| @ydo = n IR

Similarly one can use residue calculus to create of measure of steep hills in the
spectrum,

[ @,

— 00

or weighing (f'(w))? or (f”(w))? with a rational function.

o | have checked this numerically. Dual roots will give somewhat more
complicated formulas.



More partial fractions

The partial fraction trick can also be applied to calculate the Kullback-Leibner
(KL) metric, as a measure of the distance between two functions, f and f (e.g.
a prior).

D(fs ) = [ fi(w)loB(A(w)d — [ fi(w) og(f())de.
Using the second partial fraction formulation of the spectral density the
termsthat need to be integrated will be of the form:

C1,k 2 2
SR e . w?).
(W2+)‘ik) og(w +)\1]) and © —|—A2 5 og(1+ pi;w)



0 2 2 dx G 5> >
/o log(1 + p°x )m = ﬁlog(\//\ p? +1),

/0 " log(p? +33)/(q + %) = = tog((a-+ pr/r).

Here the square-root is take such that the real part of the square-root is
positive (Gradshteyn & Ryzhik, 2007, eq 1, page 560). By use of partial
fractions the KL distance can be written as:

p1
C1,k C1,k
/Zw2+A2 Z|°g1+““w dwi/zwz X, Zlog‘“ + 1)) dw—
C;
/sz MZ ng 14 1 jw ))dw+/z ZHQ (Zlog(w +2,))dw.
Jj= Jj=

This integral consists of py X g1 + p? + p1 X qo + p1 X po terms and each of
them can be calculated by the use of the above formula,

”(Z Z ¢k log(1 + AL kpin,)) ZZ C1k Iog(l + )\1,f>\1 k)

k=1 j=1 k=1 j=1

ZZ 1k |0g(1 + A1,khto,;) ZZ 1,k log( 1)\:-JA1 k)\O,J))

k=1 j=1 k=1 j=1




Implementation in R

e | have implemented the partial fractions and some of the above in R a R
package ctarmaRcpp.

N 1
1/(6 4+ 11x + 6x +X)—2(X+3) x+2+2(X+1)7

here the roots are -1,-2,-3, and the function partfraci gives the
coefficients in the partial fraction (all roots distinct).
partfraci(c(6,11,6,1),1,c(-1,-2,-3),1)
[1] 0.5 -1.0 0.5

The partial fraction enables the calculation of the Kullback-Leibler
distance between two spectral shapes.



A data set on the Earth's temperature for the past 800.000 years is used as an
illustration on an unevenly sampled time series. The ctarmaRcpp package
bundles data and model into a R object. Similar to (Témasson, 2015).The
maximized log-likelihood of a continuous-time ARMA(2,1) is contained in m2e.
The log-likelihood of m2e is calculate by:

> ctarma.loglik(m2e)
[1] -5701.584

An ARMA(4,3) gives log-likelihood of -5664.627, and an ARMA(6,5) a
log-likelihood of -5660.819. The coefficients of the estimated ARMA(2,1), are

[1] 1792.32808 13.39429
> m2e$bhat

[1] 1.00000000 0.02315723
> m2e$sigma

[1] 1331.322

Similarly the estimated coefficients of the ARMA(4,3) are:

> m4e$ahat

[1] 1497.15420 3410.91710 2328.64602 28.11924
> m4e$bhat

[1] 1.0000000 1.2087125 0.3772288 0.0128648

> mde$sigma

[1] 2239.939



The Kullback-Leibler distance is calculated with the function kullbackDist
(here the implementation is between spectral shapes).

> kullbackDist (m4e$ahat,mée$bhat ,mée$sigma,m2e$ahat,m2e$bhat)
[1] 1.172553

and for the ARMA(6,5)

> kullbackDist (m6e$ahat ,m6e$bhat ,m6e$sigma,m2e$ahat ,m2e$bhat)
[1] 3.706201



Temperature on Earth for 800 Kyears
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Figure: Temperature on Earth. About 5500 observations over 800.000 years.



log(f(w))
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Log CARMA(20,19) spectrum
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Log of ML-estimated CARMA(20,19) spectrum of Earth data.




Conclusion and discussion

e Technically it might be boring to try to find all the roots of a polynomial
of degree 20. Perhaps it is better to perform numercial optimization
directly in terms of the roots of the polynomial.

o The fact that the spectral function is rational can be exploited in more
ways than shown here.

e The partial fraction trick along with the residue calculus can be used in
calculation Bayesian, and semi-Bayesian estimators.
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