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Abstract. Bayesian methods are based on combining a problem, a model,
prior information, and data using Bayes rule. This paper addresses the
implementation of a Bayesian approach to stationary ARMA models.
The interpretation of the parameters of a ARMA models is somewhat
non-intuitive. The interpretation of the spectral function is much clearer.
A Bayesian expression of a prior belief in the frequency domain, i.e., stat-
ing a preference on the shape of the spectral function, may therefore be
more natural than formulating a prior on the time-domain parameters.
Stating a prior on a function space is non-trivial. In this paper the fact
that the spectral density of an ARMA model is rational is exploited.
The use of complex theory residue calculus is used to derive analytic
measures of desirable features of the spectral function. The approach is
equally suited for discrete- and continuous-time models.
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1 Introduction

Bayesian methods are based on combining a problem, a model, prior informa-
tion and data using Bayes rule. This paper addresses the implementation of
a Bayesian approach to stationary ARMA (Auto-Regressive-Moving-Average),
and continuous-time-ARMA (CARMA), models. The parameters of ARMA and
CARMA models are essentially a parsimonious way of modelling an auto-correlation
function. In general correlations, and in particular an auto-correlation function
(ACF), and the ARMA-parameters, of a stationary process are hard to interpret.
Therefore, defining a sensible a priori opinion about correlations is a non-trivial
issue.

In time-series analysis the spectral curve, the Fourier transform of the ACF
is much easier to interpret. Expressing a prior opinion in the frequency domain is
therefore a more natural approach. However, the spectral density is a continuous
function and operating with a probability distribution on a function space is
difficult.

A natural Bayesian approach is to state the prior in the frequency domain,
i.e., that a priori, the spectral density is of a particular type, or is in some sense
”close” to a particular spectral density. The concept ”close” requires some mea-
sure of distance between spectral densities. A conceivable measure of closeness
between two curves is the Kullback-Leibler distance.
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Calculation of a Bayes estimator can often be implemented as a frequentistic
estimator with an added penalty term. The penalty term biases the classical es-
timator towards a prior. In this case, a prior of a smooth spectrum is illustrated.
The technique is based on the fact that the spectrum of the ARMA model is ra-
tional. The residue calculus of complex analysis gives exact expressions of some
integrals of rational functions. In particular a measure of smoothness, e.g., the
integral of the squared second derivative of the spectral density can be calculated
directly. A penalty term based on a function of this measure can then be added
to an objective function, e.g., a log-likelihood function. Then this improved ob-
jective function can be used to shrink the fitted model towards a priori ideas of
the spectral shape. This approach can be modified implement other forms of a
priori information on the spectral function.

This paper is organized as follows. First a brief review of the continuous-time
ARMA model is given. Section 3 shows an intuition of a Bayesian approach
and the interpretation of the prior term in the likelihood function as a penalty
term in classical estimation. Section 4 reviews mathematical results on partial
fractions and residue calculus that are useful for calculation of some penalty
terms of interest. In section 5 the computational machinery for a continuous-
time ARMA implemented in an R-package is illustrated. Section 6 concludes
with a discussion on extending these ideas to discrete-time models, other types
of penalty functions, comparison with other types of penalty terms like AIC and
BIC.

2 On ARMA models

A continuous-time ARMA, CARMA, process can be defined in terms of a continuous-
time innovation process and a stochastic integral. A common choice of innovation
process is the Wiener process, W (t). A representation of a CARMA(p,q) process
in terms of the differential operator D is:

Y (p)(t) + α1Y
(p−1)(t) + · · ·+ αpY (t) =

σd(W (t) + β1W
1(t) + · · ·+ βqW

(q))(t)),

or α(D)Y (t) = σβ(D) dW (t),

α(z) = zp + α1z
p−1 + · · ·+ αp,

β(z) = 1 + β1z + · · ·+ βqz
q.

Here, Y (p) = DpY (t), denotes the p-th derivative of Y (t). The path of a Wiener
process is nowhere differentiable so the symbol DW (t), and higher derivatives, is
of a purely notational nature. The spectral density of Y (t) is a rational function:

f(ω) =
σ2

2π

β(iω)β(−iω)

α(iω)α(−iω)
.
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The spectral representation of CARMA is:

Y (t) =

∫ ∞
−∞

exp(iω t)dZ(ω),

E(dZ(ω)) = 0, E(dZ(ω)dZ(ω)) = f(ω)dω,

E(dZ(ω)dZ(λ)) = 0, λ 6= ω.

In mathematics an univariate linear dynamic system can be expressed as
a linear differential equation of a particular order. This can be written as a
multidimensional first order differential equation. In the state space form, the AR
part of CARMA represents a linear differential equation. Just as in the discrete-
time ARMA has several possible state-space representations, the continuous-time
CARMA has several possible state-space representations. See, e.g, Tsay (2010)
for the discrete-time case, and Bergstrom (1988) and Zadrozny (1988) for the
continuous-time case.

The stationarity condition of the CARMA requires the roots of the polyno-
mial α(z) to have negative real-parts and that p > q.

3 Intuition

A standard Bayesian approach for the normal model is to assign a normal prior
for the mean, e.g,:

X|µ, σ ∼ N(µ, σ2),

µ|σ ∼ N(µ0, σ
2
0), σ0 = τσ.

Given data, x1, . . . , xn, and reparameterizing, v = 1/σ, v0 = k0v, the log-
posterior is (σ known):

log(p(µ, v|x1, . . . , xn, µ0, k0)) =

constant +
n

2
log(v)− v

n∑
i=1

(xi − µ)2/2︸ ︷︷ ︸
A

+
1

2
log(v)− k0v(µ− µ0)2/2︸ ︷︷ ︸

B

.

The number k0 expresses the certainty in the prior. If k0 is set to zero and the
log-posterior (as a function of µ) is maximized the result is the ML estimator
and a nonzero k0 biases the ML-estimate towards the prior (µ0). The mode of
the posterior can serve as a Bayesian point estimate. The objective function is
just the likelihood function, A, with an extra ”penalty term”, B, penalizing for
deviations from the central value of the prior-distribution. Penalty terms are
commonly added to the log-likelihood functions as a model selection tool. Well
known examples are AIC and BIC.

The statistical analysis of a ARMA is essentially estimating a correlation
structure based on one observations of a particular vector y = (y(t1), . . . , y(tn)).
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The parameters of the ARMA are, a scale parameter σ, and a set of parameters
that decide the auto-correlation function, α and β. I.e:

y ∼ N(0,M(α,β)σ2).

The likelihood (with v = 1/σ) is then:

L(v,α,β|y) ∝ v n
2 |M(α,β)|−1/2e−vy

′M(α,β)−1y/2.

Using a gamma prior for v,

v ∼ gamma(a, b),

yields an analytical form of the posterior for v,

p(v|α,β,y) ∝ v n
2 |M(α,β)|−1/2e−vy

′M(α,β)−1y/2va−1e−bv,

i.e. the posterior is:

gamma(a+ n/2, b+ y′M(α,β)−1y/2).

The parameters, α,β, define the ACF and the shape of the spectral form.
In analogy with the normal mean approach is to add a penalizing term to the
likelihood. A natural choice is to multiply the likelihood with a function, h, of the
distance between the spectral function, f(α,β) and a a priori spectral function
f(α0,β0). The posterior can be of the form:

p(α,β, σ|y) ∝ L(α,β, σ|y)va−1e−bvh(KLD(f(α,β, σ), f∗(α0,β0))).

Here KLD is the Kullback-Leibler distance from spectral density f to the func-
tion f∗.

KLD(f, f∗) =

∫ ∞
−∞

log(
f(ω)

f∗(ω)
)f(ω)dω.

Here:

f(ω) =
β(iω)β(−iω)

α(iω)α(−iω)
,

f∗(ω) = σ∗
β0(iω)β0(−iω)

α0(iω)α0(−iω)
,

where σ∗ is chosen such that,∫ ∞
−∞

f(ω)dω =

∫ ∞
−∞

f∗(ω)dω.

Here the penalty term is based on some kind of a distance measure between
the spectral shape defined by the ARMA parameters and an a priory defined
spectral shape. In regression it can be based on Ridge-regression or empirical
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Bayes approaches such as James-Stein. These penalty terms can be motivated
with Bayesian arguments. Technically the ordinary maximum-likelihood is re-
placed with a penalized maximum-likelihood. The idea is to put a preference on
simpler models. The AIC, BIC and the R2-adjusted all penalize by using a func-
tion of the number of estimated parameters. The number of parameters is not
always the natural way of grading complexity. In regression it seems reasonable
that the model:

y = a+ bx+ e,

is simpler than:

y = sin(cos(ax))a exp(−bx)/xb + e.

The ARMA(1,0) model:

dY + Y = dW, ,

is actually the same as:

Y (4) + 4Y (3) + 6Y (2) + 4Y (1) + Y = d(W + 3W (1) + 3W (2) +W (3).

That is the ARMA(1,0) is a special case of (many) ARMA(4,3) models. Es-
timation of six additional parameters might result in a spectral function with
an unreasonable shape. However, it might be of interest to estimate a model
which is more complicated than an AR(1). One might, however, want restrict
the freedom of the additional parameters.

In time-series analysis, just as in non-parametric regression a smoothness
restriction may be enforced on the fitted values. That is the sharp spikes and
turns are penalized. In economics a well known procedure of this type is the
Hodrick-Prescott filter.

In stationary time-series analysis a natural form of a priori information might
consist of a specification of the spectral function or some features of the spectral
function. In analogy with the Hodrick-Prescott filter one can introduce a term
that penalizes for sharp spikes and turns, e.g., a term proportional to:∫ ∞

−∞
(f ′′(ω))2dω.

For treatment of smoothness prior concepts in time-series analysis, see, e.g.,
Kitagawa & Gersch (1996).

4 Some computational aspects

A characteristic feature of the spectral density for an ARMA model is that it is
a rational function.

f(ω) =
σ2

2π

β(iω)β(−iω)

α(iω)α(−iω)
=
σ2

2π

∏q
j=1(1 + µ2

jω
2)∏p

j=1(ω2 + λ2j )
. (1)
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Where the λj ’s are the roots of the polynomial α(z), and the µj ’s are the recip-
rocals of the roots of β(z). In the case where the roots of the polynomial α(z)
are distinct (and different from the roots of β(z), a partial fraction expression
of f(ω) can be given by:

f(ω) =
σ2

2π
(

a1
ω − iλ1

+ · · · ap
w − iλp

+
b1

ω + iλ1
+ · · · bp

ω + iλp
), (2)

and another can be given by

f(ω) =
σ2

2π
(

c1
ω2 + λ21

+ · · ·+ cp
ω2 + λ2p

). (3)

In the case of some roots of α(z) being equal, terms of the type 1/(ω − iλk)mk ,
where mk is the multiplicity of the root λk, will be present in (2). Both forms of
partial fractions are convenient. e.g., the variance due to the frequency interval
(ω1, ω2) will be given by:∫ ω2

ω1

f(ω)dω =
σ2

2π

p∑
j=1

1/|λj |(arctan(ω2/|λj |)− arctan(ω1/|λj |)).

The residue calculus of complex analysis offers a useful tool for calculating
integrals of rational functions. The residue theorem states that∫

h(x)dx = 2πi
∑

Res(h(z)), over a certain path,

where the sum is evaluated over the residues of the function h. For details see e.g.,
Kreyszig (1999). The theoretical auto-covariance function, γ(τ) = E(Y (t)Y (t− τ)),
can be derived by residue calculus:

γ(τ) =

∫ ∞
−∞

eiτωf(ω)dω. (4)

As the realpart of λj is negative the term (ω − iλj) has a pole in the upper
negative half-plane, each term in (4) is readily derived:∫ ∞

−∞

aje
iτω

ω − λj
dω = aje

−λj |τ |.

Partial fraction of the spectral density can be useful for a variety of descriptive
features. E.g. one can define a measure of smoothness:∫ ∞

−∞
(f ′′(ω))2dω. (5)

The expression (5) can be derived directly from (2) by observing that:

f ′′(ω) =
σ2

2π
(

2a1
(ω − iλ1)3

+ · · · 2ap
(w − iλp)3

+
2b1

(ω + iλ1)3
+ · · · 2bp

(ω + iλp)3
),



Helgi Tómasson, abstract, ITISE-2018 7

f ′′(ω)2 will contain p terms of the type aj/(ω− iλj)6 and p terms bk/(ω+ iλk)6

and p(p−1) terms, k 6= j, of the type akaj/((ω− iλk)3)(ω− iλj)3) and similarly
p(p − 1) terms, k 6= j, bkbj/((ω + iλj)(ω + iλj)). The residues in the upper
half-plane of these terms sums to zero. The integral will be the sum of the 2p2

residue terms of the type

akbj/((ω − iλk)3(ω + iλj)
3).

The residues of these terms are of the form:

3 · 4akbj/(−(iλk + iλj)
5,

and the integral therefore,∫ ∞
−∞

(f ′′(ω))2dω = 2πi · 2
p∑
k=1

p∑
j=1

3 · 4 akbj
−(iλk + iλj)5

.

Similarly one can use residue calculus to create of measure of steep hills in the
spectrum, ∫ ∞

−∞
(f ′(ω))2dω,

or weighing (f ′(ω))2 or (f ′′(ω))2 with a rational function.
The partial fraction trick can also be applied to calculate the Kullback-

Leibner (KL) metric, as a measure of the distance between two functions, f
and f0 (e.g. a prior).

D(f1; f0) =

∫
f1(ω) log(f1(ω))dω −

∫
f1(ω) log(f0(ω))dω. (6)

Using a partial fraction formulation of the spectral density the terms in (6) that
need to be integrated will be of the form:

− c1,k
(ω2 + λ21,k)

log(w2 + λ21,j), and
c1,j

(ω2 + λ21,k)
log(1 + µ2

1,jw
2).

Gradshteyn & Ryzhik (2007, eq 1, page 560) give the result:∫ ∞
0

log(1 + µ2x2)
dx

x2 + λ2
=

π√
λ2

log(
√
λ2µ2 + 1). (7)

Here the square-root is take such that the real part of the square-root is positive.
By use of partial fractions the KL distance can be written as:∫ p1∑

k=1

c1,k
ω2 + λ21,k

(

q1∑
j=1

log(1 + µ2
1,jω

2))dω −
∫ p1∑

k=1

c1,k
ω2 + λ21,k

(

p1∑
j=1

log(ω2 + λ21,j))dω−

∫ p1∑
k=1

c1,k
ω2 + λ21,k

(

q0∑
j=1

log(1 + µ2
0,jω

2))dω +

∫ p1∑
k=1

c1,k
ω2 + λ21,k

(

p0∑
j=1

log(ω2 + λ20,j))dω.
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This integral consists of p1 × q1 + p21 + p1 × q0 + p1 × p0 terms and each of them
can be calculated by the use of (7),

π(

p1∑
k=1

q1∑
j=1

c1,k log(1 + λ1,kµ1,j)

λ1,k
−

p1∑
k=1

p1∑
j=1

c1,k log(1 + λ1,jλ1,k)

λ1,j
+

p1∑
k=1

q0∑
j=1

c1,k log(1 + λ1,kµ0,j)

λ0,j
−

p1∑
k=1

p0∑
j=1

c1,k log(1 + λ1,kλ0,j)

λ0,j
).

Given the partial fractions of (3) these terms are all known. An analytical result
of Kullback-Leibner distance, (6), can be obtained by applying (7) to the p×(q+
p) terms in the formula above. All that is needed are the roots of the polynomials.

5 Implementation in R

A practical partial-fraction algorithm has been implemented in a R-package
ctarmaRcpp, which is a Rcpp version of the ctarma packages used for the com-
putations described in Tómasson (2015). For calculation of the partial fractions
in (2) and (3) a algorithm based on Chen & Leung (1981) was implemented in
the R function partfrac1. For each estimated model the roots of the AR and
MA part are found and then various measures can be calculated. E.g.

1/(6 + 11x+ 6x2 + x3) =
1

2(x+ 3)
− 1

x+ 2
+

1

2(x+ 1)
,

here the roots are -1,-2,-3, and the function partfrac1 gives the coefficients in
the partial fraction (all roots distinct).

partfrac1(c(6,11,6,1),1,c(-1,-2,-3),1)

[1] 0.5 -1.0 0.5

The partial fraction in (3) enables the calculation of the Kullback-Leibler dis-
tance between two spectral shapes. A data set on the Earth’s temperature for
the past 800.000 years is used as an illustration on an unevenly sampled time
series. The ctarmaRcpp package bundles data and model into a R object. The
maximized log-likelihood of a continuous-time ARMA(2,1) is contained in m2e.
The log-likelihood of m2e is calculate by:

> ctarma.loglik(m2e)

[1] -5701.584

An ARMA(4,3) gives log-likelihood of -5664.627, and an ARMA(6,5) a log-
likelihood of -5660.819. The coefficients of the estimated ARMA(2,1), are

[1] 1792.32808 13.39429

> m2e$bhat

[1] 1.00000000 0.02315723

> m2e$sigma

[1] 1331.322
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Similarly the estimated coefficients of the ARMA(4,3) are:

> m4e$ahat

[1] 1497.15420 3410.91710 2328.64602 28.11924

> m4e$bhat

[1] 1.0000000 1.2087125 0.3772288 0.0128648

> m4e$sigma

[1] 2239.939

The Kullback-Leibler distance is calculated with the function kullbackDist

(here the implementation is between spectral shapes).

> kullbackDist(m4e$ahat,m4e$bhat,m4e$sigma,m2e$ahat,m2e$bhat)

[1] 1.172553

and for the ARMA(6,5)

> kullbackDist(m6e$ahat,m6e$bhat,m6e$sigma,m2e$ahat,m2e$bhat)

[1] 3.706201

The generalization to more complicated models is straightforeward.

6 Discussion

In this paper has shown an application of partial fractions and residue calculus
to calculate measures of complexity of the spectral functions. The motivation of
this measures is that the number of parameters, such as AIC and BIC, may not
have the desired properties. The approach offers a way to measure the distance
between functions, and a measure of features such as smoothness of a spectral
function. The approach is based on the fact that the spectral function of an
ARMA model is a rational function. The approach in this paper is based on
continous-time ARMA but the arguments carry directly over to the discrete-
time ARMA. The derivation of measures of the spectral features boil down to
calculation of roots of polynomials. The ideas described allow the expression of
many forms of penalty terms, e.g., a priori formulations of the spectral function.
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