Teacher; Helgi Tómasson
Textbook: Björk, Tomas: Arbitrage theory in continuous time, Oxford University Press, 1998.
This course is an intermediate presentation of arbitrage theory using
basic stochastic calculus. The concepts of an arbitrage-free
and complete market are illustrated for a binomial model. Then basic
stochastic calculus tools, the Wiener process, Ito-integral and Ito-lemma
are
introduced. Partial differential equations are solved using
a represtentation of a stochastic process and the Feymnan-Kac theoerm.
These tools are used for deriving the Black-Scholes theorem for stock
options. The impact of relaxing the completeness restriction
is discussed by means of the market-price for risk. Some
concepts of interest rates and their relations are discussed.
Some aspects of
interest rate modelling are disscussed.
Examination: A 3 hour written exam, with books and notes
allowed,
Text covered:
Chapter 2 (Binomial model)
Chapter 3 (Ito-lemma, Wiener process)
Chapter 4 (Geometric Brownian motion, Feynman-Kac theorem)
Chapter 5 (Portfolio Dynamics)
Chapter 6 (Black-Scholes option pricing formula)
Chapter 7 (Completeness)
Chapter 8 (Hedging)
Chapter 9 (Many assets)
Chapter 10 (Incomplete markets)
Chapters 15 (Interest rate concepts)
Chapters 16-18 (Models for interest rates)
Chapters 11-13, 18-20 can be browsed briefly, and chapter 14 skipped . Students are encouraged to do exercises at the end of each chapter.